1八上《三角形》单元测试卷一、选择题(共10小题,每小题2分,满分20分)1、三角形的三边分别为3,1+2a,8,则a的取值范围是()A、﹣6<a<﹣3B、﹣5<a<﹣2C、2<a<5D、a<﹣5或a>﹣22、在△ABC中,若∠A=54°,∠B=36°,则△ABC是()A、锐角三角形B、钝角三角形C、直角三角形D、等腰三角形3、下面各组中的三条线段能组成三角形的是()A、2cm、3cm,5cmB、1cm、6cm、6cmC、2cm、6cm、9cmD、5cm、3cm、10cm4、下面命题是真命题的是()A、如果∠A=∠B,那么∠A和∠B是对顶角B、若直线y=﹣kx+2过二、四象限,则k>0C、如果a×b=0,那么a=0D、互为补角的两个角的平分线互相垂直5、在等腰三角形ABC中,它的两边长分别为8cm和3cm,则它的周长为()A、19cmB、19cm或14cmC、11cmD、10cm6、一个三角形的两边长分别为3和7,且第三边的边长为整数,这样的三角形的周长的最小值是()A、14B、15C、16D、178、等腰三角形的一个内角是50°,则另外两个角的度数分别是()A、65°,65°B、50°,80°C、65°,65°或50°,80°D、50°,50°9、下列命题中正确的是()A、对顶角一定是相等的B、没有公共点的两条直线是平行的C、相等的两个角是对顶角D、如果|a|=|b|,那么a=b10、已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为()A、90°B、110°C、100°D、120°二、填空题(共10小题,每小题2分,满分20分)11、三角形的最小角不大于度,最大角不小于度.12、命题“对顶角相等”的逆命题是,这个逆命题是命题.13、如果等腰三角形的一边长是5cm,另一边长是7cm,则这个等腰三角形的周长为.14、△ABC中,∠A+∠B=2∠C,则∠C=.15、如图所示,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=4,则PD等于.216、如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为度.17、命题“等角的余角相等”写成“如果…,那么…”的形式.18、命题“互为相反数的两数的和是0”的逆命题是,它是命题.(填“真、假”)19、如图,在△ABC中,∠B=70°,DE是AC的垂直平分线,且∠BAD:∠BAC=1:3,则∠C的度数是度.20、直角三角形的两个锐角的平分线所交成的角的度数是.三、解答题(共6小题,满分60分)21、在△ABC中,∠A+∠B=∠C,∠B=2∠A,(1)求∠A、∠B、∠C的度数;(2)△ABC按边分类,属于什么三角形?△ABC按角分类,属于什么三角形?22、如图,说明∠A+∠B+∠C+∠D+∠E=180°的理由.323、已知等腰三角形的两边分别为3和6.(1)求这个三角形的周长;(2)若(1)中等腰三角形的顶角的外角平分线所在的直线与底角的外角平分线所在的直线交于P点,探索锐角∠P与原等腰三角形顶角的关系.24、如图,在△ABC中.(1)如果AB=7cm,AC=5cm,BC是能被3整除的的偶数,求这个三角形的周长.(2)如果BP、CP分别是∠ABC和∠ACB的角平分线.a、当∠A=50°时,求∠BPC的度数.b、当∠A=n°时,求∠BPC的度数.25、如图,已知△ABC中,∠B=40°,∠C=62°,AD是BC边上的高,AE是∠BAC的平分线.求:∠DAE的度数.(写出推导过程)426、如图所示,P是△ABC内一点,连接PB、PC,试比较PB+PC与AB+AC的大小.答案:一、选择题(共10小题,每小题2分,满分20分)1、三角形的三边分别为3,1+2a,8,则a的取值范围是()A、﹣6<a<﹣3B、﹣5<a<﹣2C、2<a<5D、a<﹣5或a>﹣2考点:三角形三边关系;解一元一次不等式组。分析:本题可根据三角形的三边关系列出不等式:8﹣3<1+2a<8+3,化简得出a的取值即可.解答:解:依题意得:8﹣3<1+2a<8+3∴5<1+2a<11∴4<2a<10∴2<a<5故选C.点评:已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.注意不等式两边都除以一个负数,不等号的方向改变.2、在△ABC中,若∠A=54°,∠B=36°,则△ABC是()A、锐角三角形B、钝角三角形C、直角三角形D、等腰三角形考点:三角形内角和定理。分析:本题考查的是三角形内角和的定义,列出式子解答即可.解答:解:∵∠A=54°,∠B=36°,根据三角形内角和定理∠C=180°﹣(∠A+∠B)=90°,∴△ABC是直角三角形.5故选C.3、下面各组中的三条线段能组成三角形的是()A、2cm、3cm,5cmB、1cm、6cm、6cmC、2cm、6cm、9cmD、5cm、3cm、10cm考点:三角形三边关系。分析:判断三角形能否构成,关键是看三条线段是否满足:任意两边之和是否大于第三边.但通常不需一一验证,其简便方法是将较短两边之和与较长边比较.解答:解:A、∵2+3=5,∴以2cm、3cm,5cm长的线段首尾相接不能组成一个三角形;B、∵1+6>6,∴以1cm、6cm、6cm长的线段首尾相接能组成一个三角形;C、∵2+6<9,∴以2cm、6cm、9cm长的线段首尾相接不能组成一个三角形;D、∵3+5<10,∴以3cm、5cm,10cm长的线段首尾相接不能组成一个三角形.故选B.点评:本题主要考查了三角形三边关系定理:三角形任意两边之和大于第三边.4、下面命题是真命题的是()A、如果∠A=∠B,那么∠A和∠B是对顶角B、若直线y=﹣kx+2过二、四象限,则k>0C、如果a×b=0,那么a=0D、互为补角的两个角的平分线互相垂直考点:一次函数图象与系数的关系;有理数的乘法;余角和补角;对顶角、邻补角;命题与定理。专题:推理填空题。分析:A、根据对顶角的定义进行判断;B、根据一次函数的图象与系数的关系作出判断;C、两个数的积为零,那么它们两个因数中至少一个是零;D、根据邻补角的定义解答.解答:解:A、两个对顶角相等,但相等的两个角不一定是对顶角;故本选项错误;B、∵直线y=﹣kx+2过二、四象限,∴﹣k<0,即k>0;故本选项正确;C、如果a×b=0,那么a=0,或b=0,或a=b=0;故本选项错误;D、互为邻补角的两个角的角平分线所成角的度数为90°;故本选项错误;故选B.点评:本题综合考查了一次函数图象与系数的关系、有理数的乘法、余角和补角、对顶角的定义以及命题与定理等知识点.都属于基础题.注意:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.5、在等腰三角形ABC中,它的两边长分别为8cm和3cm,则它的周长为()A、19cmB、19cm或14cmC、11cmD、10cm考点:等腰三角形的性质;三角形三边关系。分析:等腰三角形的两腰相等,应讨论当8为腰或3为腰两种情况求解.解答:解:当腰长为8cm时,三边长为;8,8,3能构成三角形,故周长为:8+8+3=19cm.当腰长为3cm时,三边长为:3,3,8,3+3<8,不能构成三角形.6故三角形的周长为19cm.故选A.点评:本题考查等腰三角形的性质,等腰三角形的两腰相等,以及辆较小边的和大于较大边时才能构成三角形.6、一个三角形的两边长分别为3和7,且第三边的边长为整数,这样的三角形的周长的最小值是()A、14B、15C、16D、17考点:三角形三边关系。分析:本题要先确定三角形的第三条边的长度,根据三角形的三边关系的定理可以确定.解答:解:设第三边的长为x,则7﹣3<x<7+3,所以4<x<10.又x为整数,所以x可取5,6,7,8,9.所以这个三角形的周长的最小值为15.故选B.点评:考查了三角形的三边关系.8、等腰三角形的一个内角是50°,则另外两个角的度数分别是()A、65°,65°B、50°,80°C、65°,65°或50°,80°D、50°,50°考点:等腰三角形的性质;三角形内角和定理。专题:计算题。分析:本题可根据三角形的内角和定理求解.由于50°角可能是顶角,也可能是底角,因此要分类讨论.解答:解:当50°是底角时,顶角为180°﹣50°×2=80°,当50°是顶角时,底角为(180°﹣50°)÷2=65°.故选C.点评:本题主要考查了等腰三角形的性质,及三角形内角和定理.不变,纵加减.9、下列命题中正确的是()A、对顶角一定是相等的B、没有公共点的两条直线是平行的C、相等的两个角是对顶角D、如果|a|=|b|,那么a=b考点:命题与定理。分析:对顶角相等,但相等的角不一定是对顶角;同一个平面内没有公共点的两个直线平行;绝对值相等两个数,可相等或互为相反数.解答:解:对顶角相等,但相等的角不一定是对顶角,故A正确C错误.同一个平面内没有公共点的两个直线平行,故B错误.绝对值相等两个数,可相等或互为相反数,故D错误.故选A.点评:本题考查那是真命题,关键知道对顶角的概念,平行线的概念和绝对值的概念,然后7求出解.10、已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为()A、90°B、110°C、100°D、120°考点:三角形的外角性质。分析:根据三角形的外角和等于360°列方程求三个外角的度数,确定最大的内角的度数即可.解答:解:设三个外角的度数分别为2k,3k,4k,根据三角形外角和定理,可知2k°+3k°+4k°=360°,得k=40°,所以最小的外角为2k=80°,故最大的内角为180°﹣80°=100°.故选C.点评:此题考查的是三角形外角和定理及内角与外角的关系,解答此题的关键是根据题意列出方程求解.二、填空题(共10小题,每小题2分,满分20分)11、三角形的最小角不大于60度,最大角不小于60度.考点:三角形内角和定理。分析:根据“三角形的内角和是180度”可知三角形的最小角不大于60度,最大角不小于60度.解答:解:假设三角形的最小角大于60°,那么此三角形的内角和大于180度,与三角形的内角和是180度矛盾;假设三角形的最大角小于60°,那么此三角形的内角和小于180度,与三角形的内角和是180度矛盾.∴三角形的最小角不大于60度,最大角不小于60度.点评:主要考查了三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.12、命题“对顶角相等”的逆命题是相等的角是对顶角,这个逆命题是假命题.考点:命题与定理。分析:把一个命题的条件和结论互换就得到它的逆命题.解答:解:“对顶角相等”的条件是:两个角是对顶角,结论是:这两个角相等,所以逆命题是:相等的角是对顶角,它是假命题.点评:题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.13、如果等腰三角形的一边长是5cm,另一边长是7cm,则这个等腰三角形的周长为17cm或19cm.考点:等腰三角形的性质。分析:题目给出等腰三角形有两条边长为5cm和7cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:(1)当腰是5cm时,三角形的三边是:5cm,5cm,7cm,能构成三角形,则等腰三角形的周长=5+5+7=17cm;8(2)当腰是7cm时,三角形的三边是:5cm,7cm,7cm,能构成三角形,则等腰三角形的周长=5+7+7=19cm.因此这个等腰三角形的周长为17或19cm.故填17或19cm.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14、△ABC中,∠A+∠B=2∠C,则∠C=60°.考点