类型一:已知一次函数和二次函数解析式求交点坐标并比较大小如图,已知直线y=x与抛物线y=21x2交于A、B两点.(1)求交点A、B的坐标;(2)记一次函数y=x的函数值为y1,二次函数y=21x2的函数值为y2.若y1>y2,求x的取值范围.类型二:已知相关点的坐标求解一次函数和二次函数的解析式并比较大小如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求一次函数与二次函数的解析式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.练习1:如图所示,二次函数的图象与x轴相交于A、B两点,与y轴相交于点C,点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)求D点的坐标和一次函数、二次函数的解析式;(2)根据图象写出使一次函数值大于二次函数值的x的取值范围.练习2:在同一直角坐标系,开口向上的抛物线与坐标轴分别交于A(-1,0),B(3,0),C(0,-3),一次函数图象与二次函数图象交于B、C两点.ABCOxy(1)求一次函数和二次函数的解析式.(2)当自变量x为何值时,两函数的函数值都随x的增大而增大?(3)当自变量x为何值时,一次函数值大于二次函数值.(4)当自变量x为何值时,两函数的函数值的积小于0.类型三:与一次函数和二次函数的交点有关的面积类问题。如图,一次函数y=x-21与x轴交点A恰好是二次函数与x的其中一个交点,已知二次函数图象的对称轴为x=1,并与y轴的交点为(0,1).(1)求二次函数的解析式;(2)设该二次函数与一次函数的另一个交点为C点,连接BC,求三角形ABC的面积.练习1:如图,A(-1,0)、B(2,-3)两点在一次函数y1=-x+m与二次函数y2=ax2+bx-3的图象上.(1)求m的值和二次函数的解析式.(2)二次函数交y轴于C,求△ABC的面积.变式:已知一次函数y1=-x+m与二次函数y2=ax2+bx-3的图象交于两点A(-1,0)、B(2,-3),且二次函数与y轴交于点C,P为抛物线顶点.求△ABP的面积.练习2:如图,一次函数的图象与x轴交于点A,与y轴交于点B;二次函数y=21x2+bx+c的图象与一次函数y=21x+1的图象交于B,C两点,与x轴交于D,E两点,且D点坐标为(1,0).(1)求二次函数的解析式;(2)求线段BC的长及四边形BDEC的面积S;1.附加题:已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2)(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值;(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MN∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.,2.如图,过y轴上点A的一次函数与反比例函数相交于B、D两点,B(﹣2,3),BC⊥x轴于C,四边形OABC面积为4.(1)求反比例函数和一次函数的解析式;(2)求点D的坐标;(3)当x在什么取值范围内,一次函数的值大于反比例函数的值.(直接写出结果)3.如图,反比例函数y=的图象与直线y=x+m在第一象限交于点P(6,2),A、B为直线上的两点,点A的坐标为2,点B的横坐标为3.D、C为反比例函数图象上的两点,且AD、BC平行于y轴.(1)直接写出k,m的值;(2)求梯形ABCD的面积.4.如图,直线y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与x轴交于点C,其中点A的坐标为(﹣2,4),点B的横坐标为﹣4.(1)试确定反比例函数的关系式;(2)求△AOC的面积.