排序算法实验报告

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

数据结构实验报告八种排序算法实验报告一、实验内容编写关于八种排序算法的C语言程序,要求包含直接插入排序、希尔排序、简单选择排序、堆排序、冒泡排序、快速排序、归并排序和基数排序。二、实验步骤各种内部排序算法的比较:1.八种排序算法的复杂度分析(时间与空间)。2.八种排序算法的C语言编程实现。3.八种排序算法的比较,包括比较次数、移动次数。三、稳定性,时间复杂度和空间复杂度分析比较时间复杂度函数的情况:时间复杂度函数O(n)的增长情况所以对n较大的排序记录。一般的选择都是时间复杂度为O(nlog2n)的排序方法。时间复杂度来说:(1)平方阶(O(n2))排序各类简单排序:直接插入、直接选择和冒泡排序;(2)线性对数阶(O(nlog2n))排序快速排序、堆排序和归并排序;(3)O(n1+§))排序,§是介于0和1之间的常数。希尔排序(4)线性阶(O(n))排序基数排序,此外还有桶、箱排序。说明:当原表有序或基本有序时,直接插入排序和冒泡排序将大大减少比较次数和移动记录的次数,时间复杂度可降至O(n);而快速排序则相反,当原表基本有序时,将蜕化为冒泡排序,时间复杂度提高为O(n2);原表是否有序,对简单选择排序、堆排序、归并排序和基数排序的时间复杂度影响不大。稳定性:排序算法的稳定性:若待排序的序列中,存在多个具有相同关键字的记录,经过排序,这些记录的相对次序保持不变,则称该算法是稳定的;若经排序后,记录的相对次序发生了改变,则称该算法是不稳定的。稳定性的好处:排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。另外,如果排序算法稳定,可以避免多余的比较;稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序四、设计细节排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。我们这里说说八大排序就是内部排序。1.插入排序---直接插入排序(StraightlnsertionSort)基本思想:将一个记录插入到已排序好的有序表中,从而得到一个新,记录数增1的有序表。即:先将序列的第1个记录看成是一个有序的子序列,然后从第2个记录逐个进行插入,直至整个序列有序为止。要点:设立哨兵,作为临时存储和判断数组边界之用。直接插入排序示例:如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。时效分析:时间复杂度:O(n^2)2.插入排序—希尔排序(Shell`sSort)希尔排序是1959年由D.L.Shell提出来的,相对直接排序有较大的改进。希尔排序又叫缩小增量排序基本思想:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序。操作方法:1.选择一个增量序列t1,t2,…,tk,其中titj,tk=1;2.按增量序列个数k,对序列进行k趟排序;3.每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m的子序列,分别对各子表进行直接插入排序。仅增量因子为1时,整个序列作为一个表来处理,表长度即为整个序列的长度。希尔排序的示例:算法的实现:我们简单处理增量序列:增量序列d={n/2,n/4,n/8.....1}n为要排序数的个数即:先将要排序的一组记录按某个增量d(n/2,n为要排序数的个数)分成若干组子序列,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。继续不断缩小增量直至为1,最后使用直接插入排序完成排序。时效分析:希尔排序时效分析很难,关键码的比较次数与记录移动次数依赖于增量因子序列d的选取,特定情况下可以准确估算出关键码的比较次数和记录的移动次数。目前还没有人给出选取最好的增量因子序列的方法。增量因子序列可以有各种取法,有取奇数的,也有取质数的,但需要注意:增量因子中除1外没有公因子,且最后一个增量因子必须为1。希尔排序方法是一个不稳定的排序方法。3.选择排序—简单选择排序(SimpleSelectionSort)基本思想:在要排序的一组数中,选出最小(或者最大)的一个数与第1个位置的数交换;然后在剩下的数当中再找最小(或者最大)的与第2个位置的数交换,依次类推,直到第n-1个元素(倒数第二个数)和第n个元素(最后一个数)比较为止。简单选择排序的示例:操作方法:第一趟,从n个记录中找出关键码最小的记录与第一个记录交换;第二趟,从第二个记录开始的n-1个记录中再选出关键码最小的记录与第二个记录交换;以此类推.....第i趟,则从第i个记录开始的n-i+1个记录中选出关键码最小的记录与第i个记录交换,直到整个序列按关键码有序。4.选择排序—堆排序(HeapSort)堆排序是一种树形选择排序,是对直接选择排序的有效改进。基本思想:堆的定义如下:具有n个元素的序列(k1,k2,...,kn),当且仅当满足时称之为堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最小项(小顶堆)。若以一维数组存储一个堆,则堆对应一棵完全二叉树,且所有非叶结点的值均不大于(或不小于)其子女的值,根结点(堆顶元素)的值是最小(或最大)的。如:(a)大顶堆序列:(96,83,27,38,11,09)(b)小顶堆序列:(12,36,24,85,47,30,53,91)初始时把要排序的n个数的序列看作是一棵顺序存储的二叉树(一维数组存储二叉树),调整它们的存储序,使之成为一个堆,将堆顶元素输出,得到n个元素中最小(或最大)的元素,这时堆的根节点的数最小(或者最大)。然后对前面(n-1)个元素重新调整使之成为堆,输出堆顶元素,得到n个元素中次小(或次大)的元素。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。称这个过程为堆排序。因此,实现堆排序需解决两个问题:1.如何将n个待排序的数建成堆;2.输出堆顶元素后,怎样调整剩余n-1个元素,使其成为一个新堆。首先讨论第二个问题:输出堆顶元素后,对剩余n-1元素重新建成堆的调整过程。调整小顶堆的方法:1)设有m个元素的堆,输出堆顶元素后,剩下m-1个元素。将堆底元素送入堆顶((最后一个元素与堆顶进行交换),堆被破坏,其原因仅是根结点不满足堆的性质。2)将根结点与左、右子树中较小元素的进行交换。3)若与左子树交换:如果左子树堆被破坏,即左子树的根结点不满足堆的性质,则重复方法(2).4)若与右子树交换,如果右子树堆被破坏,即右子树的根结点不满足堆的性质。则重复方法(2).5)继续对不满足堆性质的子树进行上述交换操作,直到叶子结点,堆被建成。称这个自根结点到叶子结点的调整过程为筛选。如图:再讨论对n个元素初始建堆的过程。建堆方法:对初始序列建堆的过程,就是一个反复进行筛选的过程。1)n个结点的完全二叉树,则最后一个结点是第个结点的子树。2)筛选从第个结点为根的子树开始,该子树成为堆。3)之后向前依次对各结点为根的子树进行筛选,使之成为堆,直到根结点。如图建堆初始过程:无序序列:(49,38,65,97,76,13,27,49)算法的实现:从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。时效分析:设树深度为k,。从根到叶的筛选,元素比较次数至多2(k-1)次,交换记录至多k次。所以,在建好堆后,排序过程中的筛选次数不超过下式:而建堆时的比较次数不超过4n次,因此堆排序最坏情况下,时间复杂度也为:O(nlogn)。5.交换排序—冒泡排序(BubbleSort)基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。冒泡排序的示例:6.交换排序—快速排序(QuickSort)基本思想:1)选择一个基准元素,通常选择第一个元素或者最后一个元素,2)通过一趟排序讲待排序的记录分割成独立的两部分,其中一部分记录的元素值均比基准元素值小。另一部分记录的元素值比基准值大。3)此时基准元素在其排好序后的正确位置4)然后分别对这两部分记录用同样的方法继续进行排序,直到整个序列有序。快速排序的示例:(a)一趟排序的过程:(b)排序的全过程:时效分析:快速排序是通常被认为在同数量级(O(nlog2n))的排序方法中平均性能最好的。但若初始序列按关键码有序或基本有序时,快排序反而蜕化为冒泡排序。为改进之,通常以“三者取中法”来选取基准记录,即将排序区间的两个端点与中点三个记录关键码居中的调整为支点记录。快速排序是一个不稳定的排序方法。7.归并排序(MergeSort)基本思想:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。归并排序示例:算法的实现:1个元素的表总是有序的。所以对n个元素的待排序列,每个元素可看成1个有序子表。对子表两两合并生成n/2个子表,所得子表除最后一个子表长度可能为1外,其余子表长度均为2。再进行两两合并,直到生成n个元素按关键码有序的表。8.桶排序/基数排序(RadixSort)基本思想:是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。基数排序基于分别排序,分别收集,所以是稳定的。五、程序设计1、直接插入排序算法的实现2、希尔排序算法的实现3、简单选择排序算法的实现4、堆排序算法的实现5、冒泡排序算法优化后的实现6、快速排序算法的实现7、归并排序算法的实现8、基数排序算法的实现六、测试结果1、直接插入排序算法的实现有如下结果:2、希尔排序算法的实现有如下结果:3、简单选择排序算法的实现4、堆排序算法的实现5、冒泡排序算法优化后的实现6、快速排序算法的实现7、归并排序算法的实现8、基数排序算法的实现七、总结反思本次对于八种排序的系统学习,利用图标的记忆能够很好的帮助学习。花了很长时间终于把排序的基础学了一下,这段时间学了很多东西,总结一下:学的排序算法有:插入排序,合并排序,冒泡排序,选择排序,希尔排序,堆排序,快速排序,基数排序。比较一下学习后的心得。我不是很清楚他们的时间复杂度,也真的不知道他们到底谁快谁慢,因为书上的推导我确实只是小小了解,并没有消化。也没有完全理解他们的精髓,所以又什么错误的还需要高手指点。1.排序稳定,所谓排序稳定就是指:如果两个数相同,对他们进行的排序结果为他们的相对顺序不变。例如A={1,2,1,2,1}这里排序之后是A={1,1,1,2,2}稳定就是排序后第一个1就是排序前的第一个1,第二个1就是排序前第二个1,第三个1就是排序前的第三个1。同理2也是一样。这里用颜色标明了。不稳定呢就是他们的顺序不应和开始顺序一致。也就是可能会是A={1,1,1,2,2}这样的结果。2.感觉谁最好,在我的印象中快速排序是最好的,时间复杂度:n*log(n),不稳定排序。原地排序。他的名字很棒,快速嘛。当然快了。我觉得他的思想很不错,分治,而且还是原地排序,省去和很多的空间浪费。速度也是很快的,n*log(n)。但是有一个软肋就是如果已经是排好的情况下时间复杂度就是n*n,不过在加入随机的情况下这种情况也得以好转,而且他可以做任意的比较,只要你能给出两个元素的大

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功