二次函数y=ax2+bx+c图象和性质xyo一般地,抛物线y=a(x-h)+k与y=ax的相同,不同22形状位置y=ax2y=a(x-h)+k2上加下减左加右减抛物线y=a(x-h)2+k有如下特点:1.当a﹥0时,开口,当a﹤0时,开口,向上向下2.对称轴是;3.顶点坐标是。直线X=h(h,k)二次函数开口方向对称轴顶点坐标y=2(x+3)2+5y=-3x(x-1)2-2y=4(x-3)2+7y=-5(2-x)2-6直线x=–3直线x=1直线x=2直线x=3向上向上向下向下(-3,5)(1,-2)(3,7)(2,-6)你能说出二次函数y=—x-6x+21图像的特征吗?212如何画出的图象呢?216212xxy我们知道,像y=a(x-h)2+k这样的函数,容易确定相应抛物线的顶点为(h,k),二次函数也能化成这样的形式吗?216212xxy配方216212xxyy=—(x―6)+3212你知道是怎样配方的吗?怎样把函数y=3x2-6x+5的转化成y=a(x-h)2+k的形式?函数y=ax²+bx+c的图象配方:5632xxy35232xx提取二次项系数3511232xx配方:加上再减去一次项系数绝对值一半的平方32132x.2132x化简:去整理:前三项化为平方形式,后两项合并同类项掉中括号老师提示:配方后的表达式通常称为配方式或顶点式归纳二次函数y=—x-6x+21图象的画法:(1)“化”:化成顶点式;(2)“定”:确定开口方向、对称轴、顶点坐标;(3)“画”:列表、描点、连线。212函数y=3x2-6x+5的图象特征2.根据配方式(顶点式)确定开口方向,对称轴,顶点坐标.∵a=30,∴开口向上;对称轴:直线x=1;顶点坐标:(1,2)..2132xy510510Oxyx……3)6(212xy…7.553.533.557.5…6543789函数y=3x2-6x+5的图象特征求次函数y=ax²+bx+c的对称轴和顶点坐标.函数y=ax²+bx+c的顶点是配方:2yaxbxc2baxxca提取二次项系数22222bbbaxxcaaaa配方:加上再减去一次项系数绝对值一半的平方整理:前三项化为平方形式,后两项合并同类项224.24bacbaxaa224.24bacbyaxaa这种形式的式子通常被称为抛物线的顶点式.函数y=ax²+bx+c的对称轴、顶点坐标是什么?22:24:(,)24byaxbxcxabacbaa的对称轴是顶点坐标是2232288yxxyxx2221432yxxyxx1.说出下列函数的开口方向、对称轴、顶点坐标:(3)开口方向:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。4.二次函数2yaxbxc的性质:(1)顶点坐标24,;24bacbaa(2)对称轴是直线2bxa2bxa24-,4acbya最小=2bxa24-;4acbya最大=如果a>0,当时,函数有最小值,如果a<0,当时,函数有最大值,(4)最值:2bxa2bxa2bxa2bxa①若a>0,当时,y随x的增大而增大;当时,y随x的增大而减小。②若a<0,当时,y随x的增大而减小;当时,y随x的增大而增大。(5)增减性:与y轴的交点坐标为(0,c)(6)抛物线2yaxbxc与坐标轴的交点①抛物线2yaxbxc2yaxbxc12,0,,0xx12,xx20axbxc②抛物线与x轴的交点坐标为,其中为方程的两实数根所以当x=2时,。解法一(配方法):2281yxx22277x7y最小值=-2241xx224441xx例5当x取何值时,二次函数有最大值或最小值,最大值或最小值是多少?2281yxx因为所以当x=2时,。因为a=2>0,抛物线有最低点,所以y有最小值,2281yxx224218842,7222442bacbaa-7y最小值=-总结:求二次函数最值,有两个方法.(1)用配方法;(2)用公式法.解法二(公式法):又例6已知函数,当x为何值时,函数值y随自变量的值的增大而减小。211322yxx解法一:,102a∴抛物线开口向下,21169922xx21913222x21352x∴对称轴是直线x=-3,当x>-3时,y随x的增大而减小。211322yxx102a331222ba解法二:,∴抛物线开口向下,∴对称轴是直线x=-3,当x>-3时,y随x的增大而减小。例7已知二次函数212321ymxmxmm的最大值是0,求此函数的解析式.解:此函数图象开口应向下,且顶点纵坐标的值为0.所以应满足以下的条件组.21041322041mmmmm,①②由②解方程得121,22mm不合题意,舍去所求函数解析式为21111232,222yxx。21122yxx即3.2yaxbxc图象的画法.2yaxbxc2yaxhk步骤:1.利用配方法或公式法把化为的形式。2.确定抛物线的开口方向、对称轴及顶点坐标。3.在对称轴的两侧以顶点为中心左右对称描点画图。的图像,利用函数图像回答:例3画出2286yxx(1)x取什么值时,y=0?(2)x取什么值时,y>0?x取什么值时y<0?(3)x取什么值时值或最小值?(2,2)·····x=2(0,-6)(1,0)(3,0)(4,-6)2286yxx由图像知:(1)当x=1或x=3时,y=0;(2)当1<x<3时,y>0;(3)当x<1或x>3时,y<0;(4)当x=2时,y有最大值2。xy与x轴的交点情况可由对应的一元二次方程2yaxbxc20axbxc(7)抛物线的根的判别式判定:①△>0有两个交点抛物线与x轴相交;②△=0有一个交点抛物线与x轴相切;③△<0没有交点抛物线与x轴相离。例已知抛物线247,yxkxk①k取何值时,抛物线经过原点;②k取何值时,抛物线顶点在y轴上;③k取何值时,抛物线顶点在x轴上;④k取何值时,抛物线顶点在坐标轴上。,所以k=-4,所以当k=-4时,抛物线顶点在y轴上。,所以k=-7,所以当k=-7时,抛物线经过原点;②抛物线顶点在y轴上,则顶点横坐标为0,即解:①抛物线经过原点,则当x=0时,y=0,所以200407kk40221kba,所以当k=2或k=-6时,抛物线顶点在x轴上。③抛物线顶点在x轴上,则顶点纵坐标为0,即③抛物线顶点在x轴上,则顶点纵坐标为0,即22417440441kkacba24120kk122,6kk,整理得,解得:④由②、③知,当k=-4或k=2或k=-6时,抛物线的顶点在坐标轴上。22417440441kkacba抛物线位置与系数a,b,c的关系:⑴a决定抛物线的开口方向:a>0开口向上a<0开口向下⑵a,b决定抛物线对称轴的位置:(对称轴是直线x=-—)①a,b同号<=>对称轴在y轴左侧;②b=0<=>对称轴是y轴;③a,b异号<=>对称轴在y轴右侧2ab【左同右异】抛物线y=ax2+bx+c中a,b,c的作用。(3)c的大小决定抛物线y=ax2+bx+c与y轴交点的位置。当x=0时,y=c,∴抛物线y=ax2+bx+c与y轴有且只有一个交点(0,c),①c=0抛物线经过原点;②c>0与y轴交于正半轴;图象与y轴交点在x轴上方;③c<0与y轴交于负半轴。图象与y轴交点在x轴下方。例3:指出抛物线:254yxx的开口方向,求出它的对称轴、顶点坐标、与y轴的交点坐标、与x轴的交点坐标。并画出草图。对于y=ax2+bx+c我们可以确定它的开口方向,求出它的对称轴、顶点坐标、与y轴的交点坐标、与x轴的交点坐标(有交点时),这样就可以画出它的大致图象。∵a=-1<0,∴开口向下,顶点坐标(2.5,9/4),与y轴交点坐标为(0,-4),与x轴交点为(1,0)、(4,0),①y=2x2-5x+3③y=(x-3)(x+2)求下列二次函数图像的开口、顶点、对称轴请画出草图:3-9-6-1例2、已知函数y=ax2+bx+c的图象如下图所示,x=为该图象的对称轴,根据图象信息你能得到关于系数a,b,c的一些什么结论?31y1..x133.已知如图是二次函数y=ax2+bx+c的图象,判断以下各式的值是正值还是负值.(1)a;(2)b;(3)c;(4)b2-4ac;(5)2a+b;(6)a+b+c;(7)a-b+c.分析:已知的是几何关系(图形的位置、形状),需要求出的是数量关系,所以应发挥数形结合的作用.解:(1)因为抛物线开口向下,所以a<0;判断a的符号(2)因为对称轴在y轴右侧,所以02ba,而a<0,故b>0;判断b的符号(3)因为x=0时,y=c,即图象与y轴交点的坐标是(0,c),而图中这一点在y轴正半轴,即c>0;判断c的符号2404acba240acb240bac(4)因为顶点在第一象限,其纵坐标,且a<0,所以,故。判断b2-4ac的符号,且a<0,所以-b>2a,故2a+b<0;(5)因为顶点横坐标小于1,即12ba判断2a+b的符号(6)因为图象上的点的横坐标为1时,点的纵坐标为正值,即a·12+b·1+c>0,故a+b+c>0;判断a+b+c的符号(7)因为图象上的点的横坐标为-1时,点的纵坐标为负值,即a(-1)2+b(-1)+c<0,故a-b+c<0.判断a-b+c的符号1.抛物线y=2x2+8x-11的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限2.不论k取任何实数,抛物线y=a(x+k)2+k(a≠0)的顶点都在()A.直线y=x上B.直线y=-x上C.x轴上D.y轴上3.若二次函数y=ax2+4x+a-1的最小值是2,则a的值是()•A4B.-1C.3D.4或-1CBA4.若二次函数y=ax2+bx+c的图象如下,与x轴的一个交点为(1,0),则下列各式中不成立的是()A.b2-4ac0B.0C.a+b+c=0D.01xyo-15.若把抛物线y=x2-2x+1向右平移2个单位,再向下平移3个单位,得抛物线y=x2+bx+c,则()A.b=2c=6B.b=-6,c=6C.b=-8c=6D.b=-8,c=18BB-2ab4a4ac-b26.若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx-3的大致图象是()7.在同一直角坐标系中,二次函数y=ax2+bx+c与一次函数y=ax+c的大致图象可能是()xyoxyoxyoxyoABCD-3-3-3-3xyoxyoxyoxyoABCDCC二次函数y=ax2+bx+c(a≠0)的图象和性质1.顶点坐标与对称轴2.位置与开口方向3.增减性与最值抛物线顶点坐标对称轴位置开口方向增减性最值y=ax2+bx+c(a0)y=ax2+bx+c(a0)由a,b和c的符号确定由a,b和c的符号确定向上向下在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.根据图形填表:abacab44,22abacab44,22abx2直线abx2直线abacabx44,