电子电工

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1章半导体器件基础1.1半导体基础知识1.2半导体二极管1.3半导体三极管1.4场效应管1.1半导体基础知识自然界中的物质,按其导电能力可分为三大类:导体、半导体和绝缘体。半导体的特点:①热敏性②光敏性③掺杂性1.1.1本征半导体完全纯净的、结构完整的半导体材料称为本征半导体。1.本征半导体的原子结构及共价键共价键内的两个电子由相邻的原子各用一个价电子组成,称为束缚电子。图1.1所示为硅和锗的原子结构和共价键结构。图1.1硅和锗的原子结构和共价键结构2.本征激发和两种载流子——自由电子和空穴温度越高,半导体材料中产生的自由电子便越多。束缚电子脱离共价键成为自由电子后,在原来的位置留有一个空位,称此空位为空穴。本征半导体中,自由电子和空穴成对出现,数目相同。图1.2所示为本征激发所产生的电子空穴对。图1.2本征激发产生电子空穴对如图1.3所示,空穴(如图中位置1)出现以后,邻近的束缚电子(如图中位置2)可能获取足够的能量来填补这个空穴,而在这个束缚电子的位置又出现一个新的空位,另一个束缚电子(如图中位置3)又会填补这个新的空位,这样就形成束缚电子填补空穴的运动。为了区别自由电子的运动,称此束缚电子填补空穴的运动为空穴运动。图1.3束缚电子填补空穴的运动3.结论(1)半导体中存在两种载流子,一种是带负电的自由电子,另一种是带正电的空穴,它们都可以运载电荷形成电流。(2)本征半导体中,自由电子和空穴相伴产生,数目相同。(3)一定温度下,本征半导体中电子空穴对的产生与复合相对平衡,电子空穴对的数目相对稳定。(4)温度升高,激发的电子空穴对数目增加,半导体的导电能力增强。空穴的出现是半导体导电区别导体导电的一个主要特征。1.1.2杂质半导体在本征半导体中加入微量杂质,可使其导电性能显著改变。根据掺入杂质的性质不同,杂质半导体分为两类:电子型(N型)半导体和空穴型(P型)半导体。1.N型半导体在硅(或锗)半导体晶体中,掺入微量的五价元素,如磷(P)、砷(As)等,则构成N型半导体。五价的元素具有五个价电子,它们进入由硅(或锗)组成的半导体晶体中,五价的原子取代四价的硅(或锗)原子,在与相邻的硅(或锗)原子组成共价键时,因为多一个价电子不受共价键的束缚,很容易成为自由电子,于是半导体中自由电子的数目大量增加。自由电子参与导电移动后,在原来的位置留下一个不能移动的正离子,半导体仍然呈现电中性,但与此同时没有相应的空穴产生,如图1.4所示。图1.4N型半导体的共价键结构2.P型半导体在硅(或锗)半导体晶体中,掺入微量的三价元素,如硼(B)、铟(In)等,则构成P型半导体。三价的元素只有三个价电子,在与相邻的硅(或锗)原子组成共价键时,由于缺少一个价电子,在晶体中便产生一个空位,邻近的束缚电子如果获取足够的能量,有可能填补这个空位,使原子成为一个不能移动的负离子,半导体仍然呈现电中性,但与此同时没有相应的自由电子产生,如图1.5所示。图1.5P型半导体共价键结构P型半导体中,空穴为多数载流子(多子),自由电子为少数载流子(少子)。P型半导体主要靠空穴导电。1.1.3PN结及其单向导电性1.PN结的形成多数载流子因浓度上的差异而形成的运动称为扩散运动,如图1.6所示。图1.6P型和N型半导体交界处载流子的扩散由于空穴和自由电子均是带电的粒子,所以扩散的结果使P区和N区原来的电中性被破坏,在交界面的两侧形成一个不能移动的带异性电荷的离子层,称此离子层为空间电荷区,这就是所谓的PN结,如图1.7所示。在空间电荷区,多数载流子已经扩散到对方并复合掉了,或者说消耗尽了,因此又称空间电荷区为耗尽层。图1.7PN结的形成空间电荷区出现后,因为正负电荷的作用,将产生一个从N区指向P区的内电场。内电场的方向,会对多数载流子的扩散运动起阻碍作用。同时,内电场则可推动少数载流子(P区的自由电子和N区的空穴)越过空间电荷区,进入对方。少数载流子在内电场作用下有规则的运动称为漂移运动。漂移运动和扩散运动的方向相反。无外加电场时,通过PN结的扩散电流等于漂移电流,PN结中无电流流过,PN结的宽度保持一定而处于稳定状态。2.PN结的单向导电性如果在PN结两端加上不同极性的电压,PN结会呈现出不同的导电性能。(1)PN结外加正向电压PN结P端接高电位,N端接低电位,称PN结外加正向电压,又称PN结正向偏置,简称为正偏,如图1.8所示。图1.8PN结外加正向电压(2)PN结外加反向电压PN结P端接低电位,N端接高电位,称PN结外加反向电压,又称PN结反向偏置,简称为反偏,如图1.9所示。图1.9PN结外加反向电压PN结的单向导电性是指PN结外加正向电压时处于导通状态,外加反向电压时处于截止状态。1.2半导体二极管1.2.1二极管的结构及符号半导体二极管同PN结一样具有单向导电性。二极管按半导体材料的不同可以分为硅二极管、锗二极管和砷化镓二极管等。可分为点接触型、面接触型和平面型二极管三类,如图1.10所示。图1.10不同结构的各类二极管图1.11所示为二极管的符号。由P端引出的电极是正极,由N端引出的电极是负极,箭头的方向表示正向电流的方向,VD是二极管的文字符号。图1.11二极管的符号常见的二极管有金属、塑料和玻璃三种封装形式。按照应用的不同,二极管分为整流、检波、开关、稳压、发光、光电、快恢复和变容二极管等。根据使用的不同,二极管的外形各异,图1.12所示为几种常见的二极管外形。图1.12常见的二极管外形1.2.2二极管的伏安特性及主要参数1.二极管的伏安特性二极管两端的电压U及其流过二极管的电流I之间的关系曲线,称为二极管的伏安特性。(1)正向特性二极管外加正向电压时,电流和电压的关系称为二极管的正向特性。如图1.13所示,当二极管所加正向电压比较小时(0UUth),二极管上流经的电流为0,管子仍截止,此区域称为死区,Uth称为死区电压(门坎电压)。硅二极管的死区电压约为0.5V,锗二极管的死区电压约为0.1V。图1.13二极管的伏安特性曲线(2)反向特性二极管外加反向电压时,电流和电压的关系称为二极管的反向特性。由图1.13可见,二极管外加反向电压时,反向电流很小(I≈-IS),而且在相当宽的反向电压范围内,反向电流几乎不变,因此,称此电流值为二极管的反向饱和电流。(3)反向击穿特性从图1.13可见,当反向电压的值增大到UBR时,反向电压值稍有增大,反向电流会急剧增大,称此现象为反向击穿,UBR为反向击穿电压。利用二极管的反向击穿特性,可以做成稳压二极管,但一般的二极管不允许工作在反向击穿区。2.二极管的温度特性二极管是对温度非常敏感的器件。实验表明,随温度升高,二极管的正向压降会减小,正向伏安特性左移,即二极管的正向压降具有负的温度系数(约为-2mV/℃);温度升高,反向饱和电流会增大,反向伏安特性下移,温度每升高10℃,反向电流大约增加一倍。图1.14所示为温度对二极管伏安特性的影响。图1.14温度对二极管伏安特性的影响3.二极管的主要参数(1)最大整流电流IF最大整流电流IF是指二极管长期连续工作时,允许通过二极管的最大正向电流的平均值。(2)反向击穿电压UBR反向击穿电压是指二极管击穿时的电压值。(3)反向饱和电流IS它是指管子没有击穿时的反向电流值。其值愈小,说明二极管的单向导电性愈好。1.2.3二极管的测试1.二极管极性的判定将红、黑表笔分别接二极管的两个电极,若测得的电阻值很小(几千欧以下),则黑表笔所接电极为二极管正极,红表笔所接电极为二极管的负极;若测得的阻值很大(几百千欧以上),则黑表笔所接电极为二极管负极,红表笔所接电极为二极管的正极,如图1.15所示。图1.15二极管极性的测试2.二极管好坏的判定(1)若测得的反向电阻很大(几百千欧以上),正向电阻很小(几千欧以下),表明二极管性能良好。(2)若测得的反向电阻和正向电阻都很小,表明二极管短路,已损坏。(3)若测得的反向电阻和正向电阻都很大,表明二极管断路,已损坏。1.2.4二极管应用电路举例普通二极管的应用范围很广,可用于开关、稳压、整流、限幅等电路。1.2.5特殊二极管1.稳压二极管稳压二极管又名齐纳二极管,简称稳压管,是一种用特殊工艺制作的面接触型硅半导体二极管,这种管子的杂质浓度比较大,容易发生击穿,其击穿时的电压基本上不随电流的变化而变化,从而达到稳压的目的。稳压管工作于反向击穿区。(1)稳压管的伏安特性和符号图1.20所示为稳压管的伏安特性和符号。图1.20稳压二极管的伏安特性和符号(2)稳压管的主要参数①稳定电压UZ。它是指当稳压管中的电流为规定值时,稳压管在电路中其两端产生的稳定电压值。②稳定电流IZ。它是指稳压管工作在稳压状态时,稳压管中流过的电流,有最小稳定电流IZmin和最大稳定电流IZmax之分。③耗散功率PM。它是指稳压管正常工作时,管子上允许的最大耗散功率。(3)应用稳压管应注意的问题①稳压管稳压时,一定要外加反向电压,保证管子工作在反向击穿区。当外加的反向电压值大于或等于UZ时,才能起到稳压作用;若外加的电压值小于UZ,稳压二极管相当于普通的二极管使用。②在稳压管稳压电路中,一定要配合限流电阻的使用,保证稳压管中流过的电流在规定的范围之内。2.发光二极管发光二极管是一种光发射器件,英文缩写是LED。此类管子通常由镓(Ga)、砷(As)、磷(P)等元素的化合物制成,管子正向导通,当导通电流足够大时,能把电能直接转换为光能,发出光来。目前发光二极管的颜色有红、黄、橙、绿、白和蓝6种,所发光的颜色主要取决于制作管子的材料,例如用砷化镓发出红光,而用磷化镓则发出绿光。其中白色发光二极管是新型产品,主要应用在手机背光灯、液晶显示器背光灯、照明等领域。发光二极管工作时导通电压比普通二极管大,其工作电压随材料的不同而不同,一般为1.7V~2.4V。普通绿、黄、红、橙色发光二极管工作电压约为2V;白色发光二极管的工作电压通常高于2.4V;蓝色发光二极管的工作电压一般高于3.3V。发光二极管的工作电流一般在2mA~25mA的范围。发光二极管应用非常广泛,常用作各种电子设备如仪器仪表、计算机、电视机等的电源指示灯和信号指示等,还可以做成七段数码显示器等。发光二极管的另一个重要用途是将电信号转为光信号。普通发光二极管的外形和符号如图1.23所示。图1.23发光二极管的外形和符号3.光电二极管光电二极管又称为光敏二极管,它是一种光接受器件,其PN结工作在反偏状态,可以将光能转换为电能,实现光电转换。图1.24所示为光电二极管的基本电路和符号。图1.24光电二极管的基本电路和符号4.变容二极管图1.25所示为变容二极管的符号。此种管子是利用PN结的电容效应进行工作的,它工作在反向偏置状态,当外加的反偏电压变化时,其电容量也随着改变。图1.25变容二极管的符号5.激光二极管激光二极管是在发光二极管的PN结间安置一层具有光活性的半导体,构成一个光谐振腔。工作时接正向电压,可发射出激光。激光二极管的应用非常广泛,在计算机的光盘驱动器,激光打印机中的打印头,激光唱机,激光影碟机中都有激光二极管。1.3半导体三极管1.3.1三极管的结构及符号半导体三极管又称晶体三极管(下称三极管),一般简称晶体管,或双极型晶体管。它是通过一定的制作工艺,将两个PN结结合在一起的器件,两个PN结相互作用,使三极管成为一个具有控制电流作用的半导体器件。三极管可以用来放大微弱的信号和作为无触点开关。三极管从结构上来讲分为两类:NPN型三极管和PNP型三极管。图1.26所示为三极管的结构示意图和符号。图1.26三极管的结构示意图和符号符号中发射极上的箭头方向,表示发射结正偏时电流的流向。三极管制作时,通常它们的基区做得很薄(几微米到几十微米),且掺杂浓度低;发射区的杂质浓度则比较高;集电区的面积则比发射区做得大,这是三极管实现电流放大的内部条件。三极管可以是由半导体硅材料制成,称为硅三极管;也可以由锗材料制成,称为锗三极管。三极管从应用的角度讲,种类很多。根据工作频率分为高频管、低频管和开关管;根据工作功率

1 / 141
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功