行程问题【知识框架】【核心点拨】不便应万变的神器:路程=速度*时间S=v*t【解题方法】比例法是解决行程问题最简捷最有效的方法,灵活运用好比例法不但能解决处理好行程问题,更是攻克数学运算的一件法宝。【基本类型】【重点公式】调和平均数:【重点模型】1、相遇问题模型两车分别从A、B两地出发,并在A、B两地间不间断往返行驶的多次相遇问题,关键就是速度比和路程的倍数关系第一次相遇,两人共走了1S第二次相遇,两人共走了3S第三次相遇,两人共走了5S..............第N次相遇,两人共走了2*N-1个S,经过了2*N-1个相遇时间“为什么第二次相遇走了3个相遇时间?为什么不是2个相遇时间?”。下面我来推导下这个问题第一次甲走的:AC乙走的是BC甲乙第一次相遇1个相遇时间t内共走了1S.第二次相遇时,甲走了AC+CB+BD------------------①乙走了BC+CA+AD------------------②①+②=3S(甲乙共走了3S)甲乙第一次相遇共走了1S,1t甲乙第二次相遇共走了3S,因为速度不变,所以走的时间为3t推广下成公式:第N次相遇,甲乙共走了(2N-1)个S,花了(2N-1)个相遇时间t备注:对于单个的行程也是适用的,不增加推导例题:甲.乙两人同时从A、B两地出发相向而行,甲到达B地后立即往回走,回到A地后,又立即向B地走去;已到达A地后立即往回走,回到B地后,又立即向A地走去。如此往复,行走的速度不变,若两人第二次迎面相遇,地点距A地500米,第四次迎面相遇地点距B地700米,则A、B两地的距离是()A.1460米B.1350米C.1300米D.1120米【幕王侧解析】第四次走了7s正好离b7007倍数锁D2、单双岸模型第一次相遇时距离是S1,第二次相遇距离是S2全程S如果S1、S2相对的是一个地点则为单岸型,否则为双岸型单岸型公式:S=(3S1+S2)/2双岸型公式:S=3S1-S2例题:甲从A地,乙从B地同时以均匀的速度相向而行,第一次相遇离A地6千米,继续前进,到达对方起点后立即返回,在离B地3千米处第二次相遇,则A、B两地相距多少千米?A.10B.12C.18D.15【幕王侧解析】本题属于双岸问题,直接套公式。3*6-3=153、接送问题模型某团体从甲地到乙地,甲、乙两地相距100千米,团体中一部分人乘车先行,余下的人步行,先坐车的人到途中某处下车步行,汽车返回接先步行的那部分人,已经步行速度为8千米/小时,汽车速度为40千米/小时。问使团体全部成员同时到达乙地需要多少时间?A.5.5小时B.5小时C.4.5小时D.4小时【幕王侧解析】从A处出发,第一批人乘车在C处下车,然后步行前进,与此同时车返回去接第二批人,第二批人在B处上车,最后和第一批人同时到达D处现在研究,车送完第一批乘车人后和第二批乘车人相遇的情况模型分析路线图(看最上面的那条线)车:AC-CB人:AB此时二者时间相同,路程比等于速度比速度比为40:8=5:1路程比也是5:1AC+CB=5AB得出AB:BC:CD=1:2:1全程就是4份每份25km因为所用的时间相同,所以我们只需研究单个的路线就好。车:AC-CB-BD一共走了8份路程也就是2个全程T=S/V=100*2/40=5人:AB是步行v=8BD是乘车v=40T=25/8+75/40=5模型虽然重要,但是要融入心中,融会贯通。