2014年中考数学二轮专题复习试卷:圆(含答案)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2014年中考数学二轮专题复习试卷:圆(时间:120分钟满分:120分)一、选择题(本大题共15个小题,每小题3分,共45分)1.(2013湖南岳阳)两圆半径分别为3cm和7cm,当圆心距d=10cm时,两圆的位置关系为()A.外离B.内切C.相交D.外切2.(2013重庆)如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为()A.18πcmB.16πcmC.20πcmD.24πcm(第2题)(第3题)(第4题)3.(2013浙江舟山)如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,CD=2,则EC的长为()A.215B.8C.210D.2134.(2013福建厦门)如图所示,在⊙O中,ABAC,∠A=30°,则∠B=()A.150°B.75°C.60°D.15°5.(2013贵州遵义)如图,将边长为1cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为()33A.cm?                   B.(2)cm224C.cmD.3cm3(第5题)(第7题)6.(2013浙江义乌)已知圆锥的底面半径为6cm,高为8cm,则这个圆锥的母线长为()A.12cmB.10cmC.8cmD.6cm7.(2013四川内江)如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A.45cmB.35cmC.55cmD.4cm8.(2013山东青岛)直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是()A.r<6B.r=6C.r>6D.r≥69.如图,把⊙O1向右平移8个单位长度得⊙O2,两圆相交于A,B,且O1A⊥O2A,则图中阴影部分的面积是()A.4π-8B.8π-16C.16π-16D.16π-32(第9题)(第10题)(第11题)10.(2012山东济宁)如图,在平面直角坐标系中,点P坐标为(-2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.-4和-3之间B.3和4之间C.-5和-4之间D.4和5之间11.(2013重庆)如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为()A.18πcmB.16πcmC.20πcmD.24πcm12.(2012山东烟台)如图,⊙O1,⊙O,⊙O2的半径均为2cm,⊙O3,⊙O4的半径均为1cm,⊙O与其他4个圆均相外切,图形既关于O1O2所在直线对称,又关于O3O4所在直线对称,则四边形O1O4O2O3的面积为()A.12cm2B.24cm2C.36cm2D.48cm2(第12题)(第13题)(第14题)13.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA的值为()33A.B.23C.3D.214.(2012浙江宁波)如图,用邻边长分别为a,b(ab)的矩形硬纸板裁出以a为直径的两个半圆,再裁出与矩形较长边、两个半圆均相切的两个小圆.把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则a与b满足的关系式是()51A.b3aB.ba25C.baD.b2a215.(2013湖北襄阳)如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E,B、E是半圆弧的三等分点,弧BE的长为23,则图中阴影部分的面积为()3A.B.99333332C.D.2223二、填空题(本大题共6个小题,每小题3分,共18分)16.(2012江苏扬州)已知一个圆锥的母线长为10cm,将侧面展开后所得扇形的圆心角是144°,则这个圆锥的底面圆的半径是cm.17.(2013湖南株洲)如图,AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是度.18.(2013湖北襄阳)如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为m.19.(2013贵州遵义)如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=°.(第19题)(第20题)20.(2013重庆)如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC交于点E,则图中阴影部分的面积为.(结果保留π)21.(2013湖北孝感)用半径为10cm,圆心角为216°的扇形做成一个圆锥的侧面,则这个圆锥的高为cm.三、解答题(本大题共5个小题,共57分)22.(本小题满分10分)(2013江苏镇江)如图1,Rt△ABC中,∠ACB=90°,AB=5,BC=3,点D在边AB的延长线上,BD=3,过点D作DE⊥AB,与边AC的延长线相交于点E,以DE为直径作⊙O交AE于点F.(1)求⊙O的半径及圆心O到弦EF的距离;(2)连接CD,交⊙O于点G(如图2).求证:点G是CD的中点.23.(本小题满分10分)(2013广东梅州)如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2.(1)求线段EC的长;(2)求图中阴影部分的面积.24.(本小题满分10分)(2012浙江温州)如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.25.(本小题满分12分)(2013广东)如图所示,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.26.(本小题满分15分)(2012浙江杭州)如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,已知∠EAT=30°,AE33,MN222.(1)求∠COB的度数;(2)求⊙O的半径R;(3)点F在⊙O上(FME是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.参考答案1.D2.C3.D4.B5.C6.B7.A8.C9.B10.A11.C12.B13.D14.D15.D16.417.4818.0.219.5220.10-π21.822.解:(1)∵∠ACB=90°,AB=5,BC=3,由勾股定理得:AC=4,∵AB=5,BD=3,∴AD=8,∵∠ACB=90°,DE⊥AD,∴∠ACB=∠ADE,∵∠A=∠A,∴△ACB∽△ADE,BCACAB,DEADAE345,DE8AE∴DE=6,AE=10,即⊙O的半径为3;过O作OQ⊥EF于Q,则∠EQO=∠ADE=90°,∵∠QEO=∠AED,∴△EQO∽△EDA,EOOQ,AEAD3OQ,108∴OQ=2.4,即圆心O到弦EF的距离是2.4;(2)连接EG,∵AE=10,AC=4,∴CE=6,∴CE=DE=6,∵DE为直径,∴∠EGD=90°,∴EG⊥CD,∴点G为CD的中点.23.解:(1)∵在矩形ABCD中,AB=2DA,DA=2,∴AB=AE=4,DE23,∴EC=CD-DE=423;(2)∵AD1sinDEAAE2,∴∠DEA=30°,∴∠EAB=30°,∴图中阴影部分的面积为:FABDAEEAB22SSS9041304822323.36023603扇形扇形24.(1)证明:连接OD.∵∠DOB=2∠DCB,∠A=2∠DCB,∴∠A=∠DOB.又∵∠A+∠B=90°,∴∠DOB+∠B=90°,∴∠BDO=90°,∴OD⊥AB,∴AB是⊙O的切线.(2)解:过点O作OM⊥CD于点M,∵OD=OE=BE=12BO,∠BDO=90°,∴∠DBO=30°,∠DOB=60°.∵∠DCO=12∠DOB,∴∠DCO=30°,又∵OM⊥CD,OM=1,∴OC=2OM=2,∴OB=4,OD=2,∴BD=OB·cos∠DBO3423.2∴BD的长为23.25.(1)证明:在⊙O中,∵弦BD=BA,且圆周角∠BCA和∠BAD分别对BA和BD,∴∠BCA=∠BAD.(2)解:∵BE⊥DC,∴∠E=90°.又∵∠BAC=∠EDB,∠ABC=90°,∴△ABC∽△DEB,ABAC.DEBD在Rt△ABC中,∠ABC=90°,AB=12,BC=5,∴由勾股定理得:AC=13,1213144DE.DE1213,(3)证明:如图,连接OB,∵OA=OB,∴∠OAB=∠OBA.∵BA=BD,∴∠OBD=∠OBA.又∠BDC=∠OAB=∠OBA,∴∠OBD=∠BDC.∴OB∥DE,∴∠OBE=∠DBE+∠OBD=90°.即BE⊥OB于B,所以BE是⊙O的切线.26.解:(1)∵AE切⊙O于点E,∴AE⊥CE,又OB⊥AT,∴∠AEC=∠CBO=90°,又∠BCO=∠ACE,∴△AEC∽△OBC,又∠A=30°,∴∠COB=∠A=30°.(2)∵AE=33,∠A=30°,∴在Rt△AEC中,ECtanAtan30,AE即EC=AE·tan30°=3.∵OB⊥MN,∴B为MN的中点,又MN=222,∴MB=1MN22.2连接OM,在△MOB中,OM=R,MB=22,22222OBOMMBR22.COB,BOC30,OB3cosBOCcos30,OC23BOOC,22323OCOBR22.33OCECOMR,23R223R,3在中又整理得:R2+18R-115=0,即(R+23)(R-5)=0,解得:R=-23(舍去)或R=5,∴⊙O的半径R为5.(3)在EF同一侧,△COB经过平移、旋转和相似变换后,这样的三角形有6个,如图,每小图2个,顶点在圆上的三角形,如图所示:延长EO交圆O于点D,连接DF,如图所示,∵EF=5,直径ED=10,可得出∠FDE=30°,∴FD=53,则C△EFD=510531553,COBEFDCOB2C33,CC15533351.由可得∶∶∶

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功