第二章拉伸、压缩与剪切3第二章拉伸、压缩与剪切第二章答案2.1求图示各杆指定截面的轴力,并作轴力图。FR40kN50kN25kN20kN11223344(a)44FRFN440kN3FRFN325kN20kN22FN220kN11FN1解:FR=5kNFN4=FR=5kNFN3=FR+40=45kNFN2=-25+20=-5kNFN1=20kN45kN5kN20kN5kN4第二章拉伸、压缩与剪切(b)10kN10kN6kN6kN33221110kN6kNFN1=10kNFN2=10-10=0FN3=6kN1—1截面:2—2截面:3—3截面:10kNFN11110kN10kN22FN26kN33FN32.2图示一面积为100mm200mm的矩形截面杆,受拉力F=20kN的作用,试求:(1)第二章拉伸、压缩与剪切56的斜截面m-m上的应力;(2)最大正应力max和最大剪应力max的大小及其作用面的方位角。FFmm解:320101MPa0.10.2PA2303cos10.75MPa43013sin600.433MPa222max1MPamax0.5MPa2F2.3图示一正方形截面的阶梯形混凝土柱。设重力加速度g=9.8m/s2,混凝土的密度为33m/kg1004.2,F=100kN,许用应力MPa2。试根据强度条件选择截面宽度a和b。6第二章拉伸、压缩与剪切bF4m4mFFabF4m4mFFa解:214,NPa3422.04109.8210N/m211214[]NPaAa364100100.228m[]42104210Pa2223424234431001021040.2282104NPabb222[],Nb364304.16100.398m398mm2104210bFN1FN1FN2FN2FFFF2.4在图示杆系中,AC和BC两杆的材料相同,且抗拉和抗压许用应力相等,同为。BC杆保持水平,长度为l,AC杆的长度可随角的大小而变。为使杆系使用的材料最省,试求夹角的值。第二章拉伸、压缩与剪切7FFN2FN1CFFN2FN1CFFsin,0sin,022FFFFFNNYFFFFFNNNXsincos,0cos,0112111,sinNAP22cossinNAPFN1FN2A2A1FF解:)sincoscossin1(cos1221FllAlAVVV)cot2(tanFl)cottancossincossincossin1(2222sin1)(,cos1)(tan,0ctgdd由V0sin2cos1)2(tan22ctgdd0cos2sin,0cossincos2sin22222244.54,2tan,2tan28第二章拉伸、压缩与剪切2.5图示桁架ABC,在节点C承受集中载荷F作用。杆1与杆2的弹性模量均为E,横截面面积分别为A1=2580mm2,A2=320mm2。试问在节点B与C的位置保持不变的条件下,为使节点C的铅垂位移最小,应取何值(即确定节点A的最佳位置)。FFFN2FN1CFFN2FN1C1l2lsin/,cot21FFFFNN解:11111cotEAlFEAlFlNcossin22222EAlFEAlFlNtancotcossin1tansin12212AAEFlllCV0dCdV0cossincos823ddo7.552.6图示杆的横截面面积为A,弹性模量为E。求杆的最大正应力及伸长。EAFlEAFlEAFldxEAxlFEAlFlAFl2220第二章拉伸、压缩与剪切92.7图示硬铝试样,厚度mm2,试验段板宽b=20mm,标距l=70mm,在轴向拉力F=6kN的作用下,测得试验段伸长mm150.l,板宽缩短mm0140.b,试计算硬铝的弹性模量E与泊松比。解:15.0220706000EEAlFlNMPaE70000llbb/327.07015.0/20014.02.8图示一阶梯形截面杆,其弹性模量E=200GPa,截面面积AI=300mm2,AII=250mm2,AIII=200mm2。试求每段杆的内力、应力、应变、伸长及全杆的总伸长。10第二章拉伸、压缩与剪切15kN1m2m10kN25kN30kN1.5mⅢⅠⅡ15kN1m2m10kN25kN30kN1.5mⅢⅠⅡ解:130kN,N311613010100MPa30010NA63119100100.5100.05%20010E31110.51010.05mmllFN1FN1215kN,N32262151060MPa25010NA6322960100.3100.03%20010E32220.3101.50.45mmll325kN,N333632510125MPa20010NA63339125100.625100.0625%20010E33330.6251021.25mmll31230.50.451.252.2mmllllFN2FN2FN3FN32.9图示一三角架,在结点A受铅垂力F=20kN的作用。设杆AB为圆截面钢杆,直径d=8mm,杆AC为空心圆管,横截面面积为26m1040,二杆的E=200GPa。试求:结点A的位移值及其方向。第二章拉伸、压缩与剪切111.5mCFAB2.5m解:525kN,4ABNP315kN4ACNP329625102.56.22mm820010104ABABABABNllEA39615101.52.81mm200104010ACACACACNllEA2.81mmAACxl539.88mm44AABACyllFAFNABFNACAA′AClABlFNACFNABF=F=FNABFNACmmAA3.10'2.10图示一刚性杆AB,由两根弹性杆AC和BD悬吊。已知:F,l,a,E1A1和E2A2,求:当横杆AB保持水平时x等于多少?12第二章拉伸、压缩与剪切解:xlE1A1②①E2A2ABCDaFFN1FN2BAFx1xNPl2()lxNPl12,ll11221122,NlNlEAEA1122,lxxPPllEAEA221122EAlxEAEAFN1FN2FN2FN101FxlFN0)(2xlFlFNFF2.11一刚性杆AB,由三根长度相等的弹性杆悬吊。○1、○2、○3杆的拉压刚度分别为E1A1、E2A2和E3A3,结构受力如图所示。已知F、a、l,试求三杆内力。第二章拉伸、压缩与剪切131322lllΔΔΔl②E2A2E3A3AB①E1A1③aaF解:ABFFN1FN2FN3l1l3l200321FFFFFNNNY02012NNBFFM2223331112AElFAElFAElFNNN11111332222NPNNEAEAEA331112233,141PEANEAEAEA3321122332141PEANEAEAEA1122311223314141EAEANEAEAEAFF2FFN1FN1FN1FN1=FN2=FN3=F2.12横截面面积为A=1000mm2的钢杆,其两端固定,荷载如图所示。试求钢杆各段内的应力。14第二章拉伸、压缩与剪切解:123:lll几ΔΔΔ300AB500400150kN100kNFRBFRAFRA+FRB–100–150=0FN1=FRA,FN2=FRA-100,FN3=FRB04.03.0)100(5.0EAFEAFEAFRBRARA0.5(100)0.30.40,AABRRRFRAFN1FRBFN3FRAFN2100kNFRB=2FRA-75FRAFRAFRB第二章拉伸、压缩与剪切15FRA+FRB=250,FRA=108.3kN,FRB=250-FRA=141.7kN3114108.310108.31010ANRAAMPa32241008.3108.31010ANRAAMPa3334141.710141.71010BNRAAMPaFN1=FRA=108.3kN(拉力)FN2=FRA-100=108.3-100=8.3kN(拉力)FN3=FRB=141.7kN(压力)FRAFRAFRBFN1FN2FN32.13木制短柱的四角用四个44040的等边角钢加固。已知角钢的许用应力MPa160=钢,钢E=200GPa;木材的许用应力MPa12=木,MPaE12=木。试求许可荷载F。16第二章拉伸、压缩与剪切FNm+FNG=F,gmmmggNNEAEA2502501mFFFNmFNg解:△Lm=△LG,mmmgggEANNEA[]1gggmmggPNAEAEA1[][](1)mmggggEAPAEA9649412100.250.251601043.08610(1)798kN2001043.08610FFNgFNgFNgFNmFNmFFNm+FNG=F,gmmmggNNEAEA2502501mFFFNmFNg解:△Lm=△LG,mmmgggEANNEA[]1gggmmggPNAEAEA1[][](1)mmggggEAPAEA9649412100.250.251601043.08610(1)798kN2001043.08610FFNgFNgFNgFNmFNmF,gggmmmEANNEA[]1mmmggmmPNAEAEA2[][](1)ggmmmmEAPAEA94692001043.08610121040.250.25(1)997kN12100.250.251[][]798kNPPFNgFNmFNmFFFF第二章拉伸、压缩与剪切172-14在图示结构中,1、2两杆的抗拉刚度同为E1A1,3杆的抗拉刚度为E3A3,长为l。在节点处受集中力F。试求将杆1、2和3的内力。1BDC32AFl1BDC⊿l3⊿l132FN3FN1FN2FFN3FN1FN2F解:0coscos,00sinsin,031212FFFFFFFFNNNyNNXcos321lll3313311111cos,AElFlAElFlNN3233111cosNNFAEAEF1cos2cos2cos33311331133221AEAEFFAEAEFFFNNN31cos2NNFFFF18第二章拉伸、压缩与剪切2.15求图示联接螺栓所需的直径d。已知P=200kN,t=20mm。螺栓材料的[τ]=80Mpa,[σbs]=200MPa。解:2222[],4PVPAdd[],bsbsbsbsPPAtdF/2Ft/2tF/2t/2F/2Ft/2tF/2t/2316222001040mm[]8010Pd3262001050mm[]0.022