湖北省随州市2015-2016学年高二(上)期末数学试卷(文科)(解析版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页(共25页)2015-2016学年湖北省随州市高二(上)期末数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.命题p:∃x0>1,使x02﹣2x0﹣3=0,则¬p为()A.∀x>1,x2﹣2x﹣3=0B.∀x>1,x2﹣2x﹣3≠0C.∃x0≤1,x02﹣2x0﹣3=0D.∃x0≤1,x02﹣2x0﹣3≠02.如果3个整数可作为一直角三角形三条边的边长,则称这3个数为一组勾股数,从2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为()A.B.C.D.3.某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为42的样本,则老年人、中年人、青年人分别应抽取的人数是()A.7,11,18B.6、12、18C.6、13、17D.7、14、214.已知两条直线l1:x+2ay﹣1=0,l2:x﹣4y=0,且l1∥l2,则满足条件a的值为()A.B.C.﹣2D.25.用“辗转相除法”求得333和481的最大公约数是()A.3B.9C.37D.516.设m、n是不同的直线,α、β、γ是不同的平的,有以下四个命题:①若α∥β,α∥γ,则β∥γ②若α⊥β,m∥α,则m⊥β③若m∥n,n⊂α,则m∥α④若m⊥α,m∥β,则α⊥β其中正确命题的序号是()A.①③B.①④C.②③D.②④7.对某同学的6次数学测试成绩(满分100分)进行统计,作出的茎叶如图所示,给出关于该同学数学成绩的以下说法:①中位数为83;②众数为83;③平均数为85;④极差为12.第2页(共25页)其中正确说法序号是()A.①②B.③④C.②③D.①③8.已知正方体ABCD﹣A1B1C1D1中,E、F分别为棱BC和棱CC1的中点,则异面直线AC和EF所成的角为()A.30°B.45°C.60°D.90°9.已知条件p:|x+1|>2,条件q:5x﹣6>x2,则¬p是¬q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.如图是求样本x1,x2,…,x10平均数的程序框图,图中空白框中应填入的内容为()第3页(共25页)A.S=S+xnB.S=S+C.S=S+nD.S=S+11.从装有3个红球和3个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.恰有1个红球与恰有2个红球B.至少有1个黑球与都是黑球C.至少有1个黑球与至少有1个红球D.至多有1个黑球与都是红球12.如表是一位母亲给儿子作的成长记录:年龄/周岁3456789身高/cm94.8104.2108.7117.8124.3130.8139.1根据以上样本数据,她建立了身高y(cm)与年龄x(周岁)的线性回归方程为=7.19x+73.93,给出下列结论:①y与x具有正的线性相关关系;②回归直线过样本的中心点(6,117.1);③儿子10岁时的身高是145.83cm;第4页(共25页)④儿子年龄增加1周岁,身高约增加7.19cm.其中,正确结论的个数是()A.1B.2C.3D.4二、填空题(共4小题,每小题5分,满分20分)13.已知点M与两个定点O(0,0),A(3,0)的距离之比为2,则M点轨迹方程是.14.若x,y满足约束条件,则z=3x+y的最小值为.15.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为4+5π,则半径r=.16.若曲线y=与直线y=x+b有公共点,则b的取值范围是.三、解答题:(共6个小题,共70分)17.如图,给出了一个程序框图,其作用是输入x的值,输出相应y的值.(1)若视x为变量,y为函数值,写出y=f(x)的解析式;(2)若要使输入x的值与输出相应y的值相等,求输入x的值为多少.第5页(共25页)18.如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AC=4,BC=3,AB=5,AA1=4,点D是AB的中点.(1)求证:AC1∥平面CDB1;(2)求直线AB1与平面BB1C1C所成角的正切值.19.我市三所重点中学进行高二期末联考,共有6000名学生参加,为了了解数学学科的学习情况,现从中随机抽取若干名学生在这次测试中的数学成绩,制成如下频率分布表:分组频数频率[80,90)①②[90,100)0.050[100,110)0.200[110,120)360.300[120,130)0.275[130,140)12③[140,150)0.50合计④第6页(共25页)(1)根据频率分布表,推出①,②,③,④处的数字分别为:、、、.(2)在所给的坐标系中画出[80,150]上的频率分布直方图;(3)根据题中的信息估计总体:①120分及以上的学生人数;②成绩在[127,150]中的概率.20.投掷一个质地均匀的、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面标的数字是0,两个面标的数字是2,两个面标的数字是3,将此玩具边续抛掷两次,以两次朝上一面出现的数字分别作为点P的横坐标和纵坐标.(1)求点P落在区域C:x2+y2=9内(不含边界)的概率;(2)若以落在区域C(第1问中)上的所有点为顶点作面积最大的多边形区域M,在区域C上随机撤一粒豆子,求豆子落在区域M上的概率.21.已知过点A(0,﹣1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=4交于M,N两点.(1)求k的取值范围;(2)若•=9,其中O为坐标原点,求|MN|.22.如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,AB∥CD,∠BAD=∠ADC=90°,AB=AD=2CD,E为PB的中点.(1)证明:CE⊥AB;(2)若AB=PA=2,求四棱锥P﹣ABCD的体积;(3)若∠PDA=60°,求直线CE与平面PAB所成角的正切值.第7页(共25页)第8页(共25页)2015-2016学年湖北省随州市高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.命题p:∃x0>1,使x02﹣2x0﹣3=0,则¬p为()A.∀x>1,x2﹣2x﹣3=0B.∀x>1,x2﹣2x﹣3≠0C.∃x0≤1,x02﹣2x0﹣3=0D.∃x0≤1,x02﹣2x0﹣3≠0【考点】命题的否定.【专题】阅读型.【分析】特称命题:∃x0>1,使x02﹣2x0﹣3=0的否定是:把∃改为∀,其它条件不变,然后否定结论,变为一个全称命题.即∀x>1,x2﹣2x﹣3≠0【解答】解:特称命题:∃x0>1,使x02﹣2x0﹣3=0的否定是全称命题:∀x>1,x2﹣2x﹣3≠0.故选B.【点评】写含量词的命题的否定时,只要将“任意”与“存在”互换,同时将结论否定即可.2.如果3个整数可作为一直角三角形三条边的边长,则称这3个数为一组勾股数,从2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【专题】计算题;整体思想;定义法;概率与统计.【分析】一一列举出所有的基本事件,再找到勾股数,根据概率公式计算即可.【解答】解:从2,3,4,5中任取3个不同的数,有(2,3,4),(2,3,5),(2,4,5),(3,4,5)共4种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为.故选:D.【点评】本题考查了古典概型概率的问题,关键是不重不漏的列举出所有的基本事件,属于基础题.第9页(共25页)3.某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为42的样本,则老年人、中年人、青年人分别应抽取的人数是()A.7,11,18B.6、12、18C.6、13、17D.7、14、21【考点】分层抽样方法.【专题】计算题;方程思想;综合法;概率与统计.【分析】由题意,要计算各层中所抽取的人数,根据分层抽样的规则,求出各层应抽取的人数即可选出正确选项.【解答】解:由题意,老年人、中年人、青年人比例为1:2:3.由分层抽样的规则知,老年人应抽取的人数为×42=7人,中年人应抽取的人数为×42=14人,青年人应抽取的人数为×42=21人.故选:D.【点评】本题考查分层抽样,解题的关键是理解分层抽样,根据其总体中各层人数所占的比例与样本中各层人数所占比例一致建立方程求出各层应抽取的人数,本题是基本概念考查题.4.已知两条直线l1:x+2ay﹣1=0,l2:x﹣4y=0,且l1∥l2,则满足条件a的值为()A.B.C.﹣2D.2【考点】直线的一般式方程与直线的平行关系.【专题】直线与圆.【分析】根据两直线平行,直线方程中一次项系数之比相等,但不等于常数项之比,求得a的值.【解答】解:根据两条直线l1:x+2ay﹣1=0,l2:x﹣4y=0,且l1∥l2,可得,求得a=﹣2,故选C.【点评】本题主要考查两直线平行的性质,两直线平行,直线方程中一次项系数之比相等,但不等于常数项之比,属于基础题.5.用“辗转相除法”求得333和481的最大公约数是()A.3B.9C.37D.51【考点】用辗转相除计算最大公约数.第10页(共25页)【专题】转化思想;算法和程序框图.【分析】利用“辗转相除法”即可得出.【解答】解:481=333×1+148,333=148×2+37,148=37×4.∴333和481的最大公约数是37.故选:C.【点评】本题考查了“辗转相除法”,考查了推理能力与计算能力,属于基础题.6.设m、n是不同的直线,α、β、γ是不同的平的,有以下四个命题:①若α∥β,α∥γ,则β∥γ②若α⊥β,m∥α,则m⊥β③若m∥n,n⊂α,则m∥α④若m⊥α,m∥β,则α⊥β其中正确命题的序号是()A.①③B.①④C.②③D.②④【考点】空间中直线与平面之间的位置关系.【专题】定义法;空间位置关系与距离;简易逻辑.【分析】①根据面面平行的性质进行判断,②根据线面垂直和面面垂直的性质和判定定理进行判断,③根据线面平行的判定定理进行判断,④根据线面垂直,线面平行和面面垂直的性质进行判断.【解答】解:①若α∥β,α∥γ,则β∥γ,成立,故①正确,②若α⊥β,m∥α,则m⊥β或m∥β或m⊂β,故②错误,③若m∥n,n⊂α,则m∥α或m⊂α,故③错误,④若m⊥α,m∥β,则α⊥β成立,故④正确,故正确是①④,故选:B.【点评】本题主要考查与空间直线和平面平行或垂直的命题的真假的判断,要求熟练掌握空间线面,面面平行或垂直的性质定理和判定定理.7.对某同学的6次数学测试成绩(满分100分)进行统计,作出的茎叶如图所示,给出关于该同学数学成绩的以下说法:①中位数为83;②众数为83;③平均数为85;④极差为12.第11页(共25页)其中正确说法序号是()A.①②B.③④C.②③D.①③【考点】众数、中位数、平均数.【专题】计算题;图表型;概率与统计.【分析】根据已知中的茎叶图,求出中位数,众数,平均数及极差,可得答案.【解答】解:由已知中茎叶图,可得:①中位数为84,故错误;②众数为83,故正确;③平均数为85,故正确;④极差为13,故错误.故选:C.【点评】本题考查的知识点是茎叶图,统计数据计算,难度不大,属于基础题.8.已知正方体ABCD﹣A1B1C1D1中,E、F分别为棱BC和棱CC1的中点,则异面直线AC和EF所成的角为()A.30°B.45°C.60°D.90°【考点】异面直线及其所成的角.【专题】计算题.【分析】连接BC1,A1C1,A1B,根据正方体的几何特征,我们能得到∠A1C1B即为异面直线AC和EF所成的角,判断三角形A1C1B的形状,即可得到异面直线AC和EF所成的角.【解答】解:连接BC1,A1C1,A1B,如图所示:第12页(共25页)根据正方体的结构特征,可得EF∥BC1,AC∥A1C1,则∠A1C1B即为异面直线AC和EF所成的角BC1=A1C1=A1B,∴△A1C1B为等边三角形故∠A1C1B=60°故选C【点评】本题考查的知识点是异面直线及其所成的角

1 / 25
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功