1CxxcotcsclnCaxaarctan1复习CxcoslnCxsinlnCxxtanseclnCaxaxaln211.基本积分公式xtandxxcotdx221axdx221xadxxcscdxdxxsec221xadxCaxarcsin22.积分方法:(1)直接积分法:(2)第一类换元法CxF)]([令ux)(CuF)(回代)(xu)(xgdx)(ufdu)]([xfd)]([x)]([xfdxx)(关键:将化为:)(xgdxd)]([xfxx)(恒等变形(凑微分法)34-2.2第二类换元积分法问题:解决方法:改变中间变量的设置方法.令,tx,2txCtt)1ln(2则于是dx=2tdt,xxd11=?txtttd12xtxxd11ttd)111(2.)]1ln([2Cxx4定理2(第二类换元积分法)设)(xf连续,又)(tx的导数)(t也连续,且,0)(t则有换元公式:}])([{1CxF(易积)若CtF)(.)]([1CxF其中:)(1xt是)(tx的反函数.证由复合函数和反函数的求导法则得:])()[(1xtF)(1)(ttF,CtFtttf)(d)()]([)(xfdx)(td)(1)()]([tttf).(xf证毕.)(tx令)(tftttfd)()]([)(1xt回代5例1求.d1xxx解令,1ux,12ux1xu注意:第二类换元法可以去被积函数中的根号.dx=2udu,uuuud212xxxd1uuud1222uud)111(22Cuu)arctan(2.)1arctan1(2Cxx6例2求21xxx解令,tx2Ctt2arctan22.22arctan222Cxx于是,原式=dx.22txdx=2tdt,则tttt2)2(322dt212222ttdt[2dt212tdt.nbaxtnbax当时,为去根号,通常令注:7例3求31xx6txCtttt]1ln23[623.)1ln(6632663Cxxxx解令,tx6说明:无理函数去根号时,dx.则dtt56dx则,原式=2356tttdt163ttdt11)1(63ttdt]11)1[(62tttdt取根指数的最小公倍数.8解令,taxsinCtta]2sin21[22tax22xa.2arcsin2222Cxaxaxa],2,2[t例4求).0(22axadxtacosdt,dx原式=22cosdatt21(arcsin22axaaxa22ax2C)22cosdatt9解令,taxtan1tanseclnCtttax22ax,122lnCaaxaxCaxx)ln(22例5求).0(122aaxdxdxta2secdt,),2,2(t221axdxtata2secsec1dttsecdt221axdx10解令,taxsec1tanseclnCtttax22ax122lnCaaxaxCaxx22ln例6求).0(122aaxdxttatansecdxdt,),2,0(t221axdxtattatantansecdttsecdt221axdx11说明:以上几例所使用的均为三角代换.三角代换的目的也是化掉根式.一般规律如下:22)1(xa可令,taxsin22)2(xa可令,taxtan22)3(ax可令,taxsec注意:灵活运用三角代换,以上规律并不是绝对的.当被积函数中含有;)2,2(t;)2,2(t).2,0(t12解CaxarcsinCaxarcsin能不换元就不换元.例7求).0(122axadx221xadx)()(112axaxd注意:221xadx13例8求21xxdx解21xxdx22)21()25(xd)21(x.512arcsinCx14解令,taxtantax22ax311(sin2)22ttCaaxa(arctan213例9求).0()(1222aaxdxta2secdxdt,),2,0(t原式=tata244secsec1dt231cosdtta.)(arctan21223Cxaaxaxa21222xax22xaaC)15例10求.9412xxdx解9412xxdx942x)94(2xd8121223)2()2(xxd942812xCxx)942ln(212.)942ln(21944122CxxxCaxx)ln(22221axdx16例11求.d3212xxx解22)2()1()1(dxx.21arctan21Cx思考题求32222xxxdx.xxxd321217例12求.58162xxdx解58162xxdx4)14()14(412xxdCaxx)ln(22221axdx.)581614ln(412Cxxx令,tan214tx则d(4x+1)t2sec2dt,原式=ttsec2sec2412dt=tsec41dt1tansecln41Cttt214x58162xx18解xet1令,12texCtt11ln),1ln(2txCeexx1111ln例13求xe11dx.122ttdxdt,则,原式=122tdtCxxa11ln21221axdx19说明:当分母的次数较高时,.1tx令tx1Ct|41|ln2416.||ln41)4ln(2416Cxx解例14求)4(16xxdx.21tdxdt,原式)1(4)1(26tttdt6541ttdt6641)(61ttd可采用倒代换20例15求.dsin22sin1xxx解原式=)cos1(sin2dxxx)cos1)(cos1(dsin212xxxxuxcos)1)(1(d212uuuuuuuud)1)(1()1()1(412221d41)1(d41uuuuCuuu11ln81)1(41.cos1cos1ln81)cos1(41Cxxx94年考研题21基本积分表2;coslndtanCxxx;sinlndcotCxxx;tanseclndsecCxxxx;cotcsclndcscCxxxx;arctan1d122Caxaxxa)0(;ln21d122>aCaxaxaxax14151617181920Caxxxaarcsind122)0(a(a>0)xaxd122.ln22Caxx21小结22两类积分换元法:(一)凑微分(二)三角代换、ux)()(tx(变量u是x函数)倒代换、根式代换(t是自变量)