八年级数学(上)几何证明练习题1、已知:在⊿ABC中,∠A=90度,AB=AC,在BC上任取一点P,作PQ∥AB交AC于Q,作PR∥CA交BA于R,D是BC的中点,求证:⊿RDQ是等腰直角三角形。2、已知:在⊿ABC中,∠A=900,AB=AC,D是AC的中点,AE⊥BD,AE延长线交BC于F,求证:∠ADB=∠FDC。3、已知:在⊿ABC中BD、CE是高,在BD、CE或其延长线上分别截取BM=AC、CN=AB,求证:MA⊥NA。4、已知:如图(1),在△ABC中,BP、CP分别平分∠ABC和∠ACB,DE过点P交AB于D,交AC于E,且DE∥BC.求证:DE-DB=EC.5、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。(1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明);(2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。RQDCABPEFDCABMNDEBCAABCDEP图⑴6、如图,△ABC为等边三角形,延长BC到D,延长BA到E,AE=BD,连结EC、ED,求证:CE=DE7、如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平分∠ABC,DE⊥BC且BC=10,求△DCE的周长。例1(6分题):如图,已知∠B=∠C=90°,M是BC的中点,DM平分∠ADC。(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论。(2)DM与AM有怎样的位置关系?请说明理由。(3)求证:AD=AB+CD练2(6分题):如图,AB∥CD,DE平分∠ADC,AE平分∠BAD,求证:AD=AB+CD例3(6分题):如图,已知∠B=∠C=90°,M是BC的中点,DM平分∠ADC。求证:AD=AB+CD