故障诊断技术

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

振动测量就是通过对机械设备所表现的振动信号进行检测、分析,用以判断机械自身的劣化程度及预测其寿命。一般所进行的振动测量大致有以下两方面的内容:1.振动基本参数的测量。测量振动构件上某点的位移、速度、加速度、频率和相位,用于识别该构件的运动状态是否正常。2.结构和部件的动态特性测量。这种测量方式以某种激振力作用在被测体上,使被测件产生受迫振动,测量输入(激振力)和输出(被测体振动响应),从而确定被测体的固有频率、振型等动态参数。这类测量称为“频率响应试验”或“机械阻抗试验”。各种机器设备在运行中,都不同程度地存在振动,并且这些振动往往与机器的运行状态相关,为了能从不同角度来研究振动问题,首先介绍机械振动的3种分类方法:按振动规律分类,按振动的动力学特征分类,按振动频率分类。1.按振动规律分类这种分类,主要是根据振动在时间历程内的变化特征来划分的。大多数机械设备的振动是左图所示几种振动中的一种,或是某几种振动的组合。设备在实际运行中,其表现的周期信号往往淹没在随机振动信号中,而当设备故障程度加剧时,随机振动中的周期成分加强。因此,从某种意义上讲,设备振动诊断过程,是从随机信号中提取周期成分的过程。2.按振动的动力学特征分类(1)自由振动与固有频率这种振动靠初始激励(通常是一个脉冲力)一次性获得振动能量,历程有限,一般不会对设备造成破坏,不是现场设备诊断所需考虑的目标。描写单自由度线性系统的运动方程式为:式中x-振动位移量通过对自由振动方程的求解,我们导出了一个很有用的关系式:无阻尼自由振动的振动频率为:式中:m—物体的质量、k—物体的刚度这个振动频率与物体的初始情况无关,完全由物体的力学性质决定是物体自身固有的称为固有频率,这个结论对复杂振动体系同样成立。它揭示了振动体的一个非常重要的特性。许多设备强振问题,如强迫共振、失稳自激、22()()0dxtmkxtdtnkm非线性谐波共振等均与此有关。阻尼振动体在运动过程中总是会受到某种阻尼作用,如空气阻尼、材料内摩擦损耗等,只有当阻尼小于临界值时才可激发起振动。临界阻尼Ce:振动体的一种固有属性。eC=2km阻尼比ζ:实际阻尼系数C与临界阻尼Ce之比。eC=C当阻尼比ζ<1时,为一种振幅按指数规律衰减的振动,其振动频率与初始振动无关,振动频率ω略小于固有频率ωn;当ζ≥1时,物体不会振动,而是作非周期运动。(2)强迫振动和共振物体在持续的周期变化的外力作用下产生的振动叫强迫振动,如由不平衡、不对中所引起的振动。图2为强迫振动的力学模型。2o2dxdxm+c+kx=Fsinwtdtdt由图2—3所见,衰减自由振动随时间推移迅速消失,而强迫振动则不受阻尼影响,是一种振动频率和激振力同频的振动。从而可见,强迫振动过程不仅与激振力的性质(激励频率和幅值)有关,而且,与物体自身固有的特性(质量、弹性刚度、阻尼)有关,这就是强迫振动的特点。由强迫振动的运动方程式知,其解由通解和特解组成,即2()sin(1)sin()ntnxtAetBt21,nn通解部分为衰减自由振动,特解部分为稳态强迫振动。式中A-自由振动的振幅,B-强迫振动的振幅。ζ-阻尼比,φ,ψ-初相角。强迫振动的特点:1)物体在简谐力作用下产生的强迫振动也是简谐振动,其稳态响应频率与激励频率相等。2)振幅B的大小除与激励力大小写成正比、与刚度成反比外,还与频率比、阻尼比有关。(a)当激励力的频率很低时,即ω/ωn很小时:强迫振动的振幅接近于静态位移(力的频率低,相当于静力),即振幅B与静力作用下的位移比值β=1。(b)当激励力的频率很高时:β≈0,即物体由于惯性原因跟不上力的变化而几乎停止不动。(c)当激励力的频率与固有频率相近时:若阻尼很小,则振幅很大,为共振现象。共振频率为自由振动、强迫振动、自激振动这三种振动在设备故障诊断中有各自的主要使用领域。对于结构件,因局部裂纹、紧固松动等原因导致结构件的特性参数发生改变的故障,多利用脉冲力所激励的自由振动来检测,测定构件的固有频率、阻尼系数等参数的变化。对于减速箱、电动机、低速旋转设备等机械故障,主要以强迫振动为特征,通过对强迫振动的频率成分、振幅变化等特征参数分析,来鉴别故障。对于高速旋转设备以及能被工艺流体所激励的设备,除了需要监测强迫振动的特征参数外,还需监测自激振动的特征参数。3.按振动频率分类低频振动:f10Hz,在低频范围,主要测量的振幅是位移量。这是因为在低频范围造成破坏的主要因素是应力的强度。位移量是与应变、应力直接相关的参数。中频振动:f=10~1000Hz,在中频范围,主要测量的振幅是速度量。这是因为振动部件的疲劳进程与振动速度成正比,振动能量与振动速度的平方成正比。在这个范围内,零件的疲劳破坏为主要表现,如点蚀、剥落等。高频振动:f1000Hz在高频范围,主要测量的振幅是加速度。它表征振动部件所受冲击力的强度。冲击力的大小与冲击的频率与加速度值正相关。目前在工业发达的国家中,油液分析技术正在或已经成为机械设备状态监测及故障诊断的不可缺少的方法之一,占有重要的地位。(1)分析内容:主要包括磨粒分析、油品理化分析、颗粒计数分析等方面内容。其中磨粒分析指油样中所含磨粒的数量、大小、形态、成分及其变化。理化、颗粒计数分析则主要是监测油品的衰变程度:氧化程度、聚合程度、被污染程度、被燃油和水稀释程度以及添加剂成分的损耗程度等。(2)分析功能:a监测设备、诊断故障、失效分析、预测预防;b推行状态监测,实行视情维修,降低维修费用,合理地利用设备的效益;c保证油品的质量,判断油品的被污染和变质程度;d延长润滑油的使用期限;e制定合理的设备磨合规范。油液分析技术的机理和分析内容汇总表油液分析技术机理分析内容理化指标油品物理、化学性能指标的变化,反映油品的劣化变质程度,表明润滑油的润滑性能下降,超过一定数值则该润滑油成为废油。粘度、酸值、碱值、闪点、水分、机械杂质、积炭、硝化、硫化、氧化、乙二醇颗粒计数杂质污染颗粒数光谱通过测量物质燃烧时发出的特定波长、一定光强度的光,从而检测磨粒的元素成分及含量浓度、监测设备运行状态、磨损趋势、判断磨损部位金属磨粒元素成分和含量浓度值;添加剂元素成分浓度;杂质污染元素成分及浓度铁谱借助高梯度、强磁场的铁谱仪将油液中的金属磨粒有序地分离出来,通过分析这些磨损颗粒的形貌、大小、数量、成分,从而对机械设备的运转工况、关键部件的磨损状态及磨损机理进行判断磨粒尺寸、数量、形貌、成分1.油品理化分析它是通过检测油液本身的性能及其组成,掌握油液在使用过程中的变化情况。油液质量的好坏,将直接影响机器的正常状态,因此检测油液品质的变化是设备诊断的一种常用手段。分类:油液物理化学性能的分析和油液中化学组分的分析。在设备的状态监测中,主要对润滑油或液压油的以下指标进行常规分析内容如下:运动粘度、酸值、水分、铜片腐蚀、机械杂质。运动粘度是反应液体粘度大小的一个表示方法,是用毛细管粘度计来进行测定的。它是流体润滑材料最重要的性能。粘度大的润滑油能够承受大的压力负荷,不易从摩擦面挤出来,并保持一定厚度的油膜;但粘度过大则不能流到配合间隙很小的两摩擦面间,因而不能起到润滑作用。对液压油而言,粘度的大小直接影响设备工作的性能,如液压动作的灵敏性,液压力的传递以及供给等。酸值是中和1克油中酸性成分所需碱的毫克数,以mgKOH/g表示。一方面,酸值是控制和反映油品精制程度的重要指标之一,油品精制深度愈深,其酸值愈小。另一方面,油在储存或使用中由于一定温度下,与空气中的氧发生化学反应,生成一定量的有机酸。此时,油品的酸值越大,说明油品衰变越严重,也是判定油的废旧程度的重要指标。水分是指油品中含水量的百分比。水分的存在会使金属产生锈蚀,降低油品润滑性,使油品更易蒸发和起泡,还会加速油品水解和氧化,产生沉淀物和腐蚀性物质等,所以合格油品中应无水分或只有水的痕迹。油中的水分主要是在储运、保管和使用过程中由外界混入的。铜片腐蚀性指油液对有色金属(铜)的腐蚀程度。把经过磨光的干净铜片浸入试油中,再把存试油的试管放入规定的油浴中,以规定的时间把铜片取出,洗净后,与腐蚀标准色板进行比较,以评定其等级。腐蚀原因有油品的精制程度,如少量活性的含硫化合物和水溶性低分子有机酸引起;此外油品受氧化后也会产生氧化产物,这些物质对金属都有腐蚀性。机械杂质是指油品中不溶于汽油和苯的沉淀物,即把一定量的试油溶于热汽油或热苯中,然后过滤,沉淀物则留在滤纸上,用热的汽油或苯把沉淀物洗净、干燥、称重,最后算出该油品中所含机械杂质的重量百分比3.光谱和铁谱分析技术光谱和铁谱分析是对机械设备进行油液磨损诊断的主要手段。1).光谱分析:用于分析在用润滑油中的金属磨粒和污染物微粒的元素组成和含量,以评价取样设备和零件的磨损程度,并预报其剩余寿命。最常见的磨损金属元素测定技术包括原子吸收光谱分析、原子发射光谱分析和X射线荧光光谱分析;其中,原子发射光谱分析用得最多。光谱仪可以测定润滑油中的磨粒、添加剂和污染物的成分和数量(浓度)。通过对照机器零件的成分可以准确地诊断故障并预报其发展趋势。光谱分析的不足之处是只能准确测定尺寸为10微米以下的微粒。2).磨粒分析(铁谱分析)润滑油液监测的核心是磨粒分析,分析内容:1)磨粒数量:用于判断机器处于何种磨损阶段;2)磨粒尺寸:根据磨粒尺寸分布,判断机器的磨损程度;3)磨粒成分:用于确定磨损零部件和元素的来源;4)磨粒形态:用于分析磨损机理和磨损类型。铁谱技术的基本原理利用高梯度强磁场的作用,将从设备润滑系统内采集的油样中分离出磨损颗粒,并借助不同仪器检验分析这些磨损颗粒的形貌、大小、数量、成分,从而对机械设备的运转工况、关键部件的磨损状态进行分析判断。根据分离磨粒、检测磨粒的不同方法,研制了不同的铁谱仪。主要有分析式铁谱仪、直读式铁谱仪、旋转式铁谱仪、磨粒定量仪以及磁塞等,它们均为离线测量分析。另外还有能在设备的润滑系统中分析测量磨粒的铁谱仪称之为在线式铁谱仪。磨粒分类大致可以分为:正常滑动磨粒、片状磨粒、切削磨粒、严重滑动磨粒、疲劳剥离磨粒、球状磨粒、红色氧化物颗粒、黑色氧化物颗粒、亚微米级腐蚀磨粒、摩擦聚合物颗粒等在机械设备中广泛存在着两类工作油:液压传动中的液压油和减少运动副摩擦的润滑油,它们携带有大量的关于机械设备运行状态的信息,特别是其中的润滑油,它所及的各摩擦副的磨损碎屑都将落入其中并随之一起流动。这样,我们通过对工作油液(脂)的合理采样,并进行必要的分析处理后,就能取得关于该机械设备各摩擦副的磨损状况:包括磨损部位、磨损机理以及磨损程度等方面的信息,从而对设备所处工况作出科学的判断。油样分析技术有如人体健康检查中的血液化验,已成为机械故障诊断的主要技术手段之一。油样分析技术的内容非常广泛,包括油品理化性能指标化验、油样污染度评定(以颗粒计数为代表)、以及油样铁谱和光谱分析技术等。在机械故障诊断这个特定的技术领域中,油样分析技术通常是指油样的铁谱分析技术和油样光谱分析技术,有时也包含磁塞技术。三种油样分析技术的共性是都可用作铁磁性物质颗粒(光谱分析不仅限于铁磁性物质)的收集和分析,但各有不同的尺寸敏感范围,三种油样分析方法的检测效率随颗粒尺寸的变化情况如图5-1所示。图5—1清楚地表明了光谱技术、铁谱技术以及磁塞这三种油样分析技术对铁磁性颗粒的敏感尺寸范围分别为:光谱:<10μm、铁谱:1~100μm、磁塞:100~1000μm,这三种油样分析技术所提供的信息也不尽相同,因而各有其应用场合。1.信息来源通过油样分析,我们能取得如下几方面的信息:(1)磨屑的浓度和颗粒大小反映了机器磨损的严重程度;(2)磨屑的大小和形貌反映了磨屑产生的原因,即磨损发生的机理;(3)磨屑的成分反映了磨屑产生的部位,亦即零件磨损的部位。将以上三方面的信息综合起来,即可对零件摩擦副的工况作出比较合乎实际的判断。铁谱分析技术(Ferrography)是70年代国际摩擦学领域出现的一项新技术,1970年,美国麻省理工学院(MIT)的W.W.S

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功