全等三角形与坐标系

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1全等三角形与坐标系1.如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(𝑎−𝑡)2+|𝑏−𝑡|=0(𝑡0).(1)证明:OB=OC;(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE,F是CE的中点,连接AF,OA,当点A在第一象限内运动(AD不过点C)时,证明:∠OAF的大小不变;(3)如图2,B′与B关于y轴对称,M在线段BC上,N在CB′的延长线上,且BM=NB′,连接MN交x轴于点T,过T作TQ⊥MN交y轴于点Q,求点Q的坐标22.如图1,已知线段AC∥y轴,点B在第一象限,且AO平分∠BAC,AB交y轴与G,连OB、OC.(1)判断△AOG的形状,并予以证明;(2)若点B、C关于y轴对称,求证:AO⊥BO;(3)在(2)的条件下,如图2,点M为OA上一点,且∠ACM=45°,BM交y轴于P,若点B的坐标为(3,1),求点M的坐标.33.平面直角坐标系中,矩形OABC的边OC、OA分别在x轴、y轴上,点A(0,m),点C(n,0),且m、n满足√𝑚+2+(𝑛−2)2=0.(1)求点A、C的坐标;(2)如图1,点D为第一象限内一动点,连CD、BD、OD,∠ODB=90°,试探究线段CD、OD、BD之间的数量关系,并证明你的结论;(3)如图2,点F在线段OA上,连BF,作OM⊥BF于M,AN⊥BF于N,当F在线段OA上运动时(不与O、A重合),𝑂𝑀+𝐴𝑁𝐵𝑁的值是否变化?若变化,求出变化的范围;若不变,求出其值.44.已知点A与点C为x轴上关于y轴对称的两点,点B为y轴负半轴上一点.(1)如图1,点E在BA延长线,连接EC交y轴于点D,若BE=8,EC=6,CB=4,求△ADE的周长;(2)如图2,点G为第四象限内一点,BG=BA,连接GC并延长交y轴于F,试探究∠ABG与∠FCA之间有和数量关系?并证明你的结论;(3)如图3,A(-3,0),B(0,-4),点E(-6,4)在射线BA上,以BC为边向下构成等边△BCM,以EC为边向上构造等腰△CNE,其中CN=EN,∠CNE=120°,连接AN,MN,求证:𝐴𝑁𝑀𝑁=125.已知,在平面直角坐标系中,点A(-3,0),点B(0,3).点Q为x轴正半轴上一动点,过点A作AC⊥BQ交y轴于点D.(1)若点Q在x轴正半轴上运动,且OQ<3,其他条件不变,连OC,求证:∠OCQ的度数不变.(2)有一等腰直角三角形AMN绕A旋转,且AM=MN,∠AMN=90°,连BN,点P为BN的中点,猜想OP与MP的数量和位置关系并证明.56.如图,A(O,4),B(-2,O),C(2,O),CM⊥AB,ON⊥AC,垂足分别为M、N.(1)求证:CM+CN=AB;(2)过O点作直线EF交AC于E,BF与AC相交于P点,若AE+BF=AB,问PE与PF存在怎样关系并证明.图①图②7.如图,△AOB和△ACD是等边三角形,其中AB⊥x轴于E点,点E坐标为(3,0),点C(5,0).(1)如图①,求BD的长;(2)如图②,设BD交x轴于F点,求证:∠OFA=∠DFA;(3)如图③,若点P为OB上一个动点(不与0、B重合),PM⊥OA于M,PN⊥AB于N.当P在OB上运动时,下列两个结论:①PM+PN的值不变;②PM-PN的值不变.其中只有一个是正确的,请找出这个结论,并求出其值.图①图②图③68.如图,已知B(-1,O),D(O,2),经过点C(3,0)的直线EC交直线BD于A,交y轴于E,使AD=AE.(1)求证:AB=AC;(2)△ABC沿x轴方向平行移动时,AB交y轴于D,直线DF交AC延长线于F,交x轴于G且BD=CF,求证:OG长度不变.图①图②

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功