-1-yxOPCBA(第7题)l2l1NOMBA(第9题)苏教版九年级数学上册圆综合提优复习自测卷一、选择题1、⊙O的半径为5,圆心O的坐标为(0,0),点P的坐标为(4,2)则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.点P在⊙O上或⊙O外2.下列命题正确的个数有()①等弧所对的圆周角相等;②相等的圆周角所对的弧相等;③圆中两条平行弦所夹的弧相等;④三点确定一个圆;⑤在同圆或等圆中,同弦或等弦所对的圆周角相等.A.2B.3C.4D.53.如图,C是以AB为直径的⊙O上一点,已知AB=10,BC=6,则圆心O到弦BC的距离是()A.3B.4C.5D.2.54.如图,□ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为()A.36°B.46°C.27°D.63°5.如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是()A.30°B.35°C.45°D.60°6.在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC绕AC所在的直线旋转一周得到一个旋转体,则该旋转体的侧面积为()A.12πB.15πC.30πD.60π7.如图,经过原点的⊙P与两坐标轴分别交于点A(23,0)和点B(0,2),C是优弧OAB⌒上的任意一点(不与点O、B重合),则∠BCO的值为()A.45°B.60°C.25°D.30°8.若将直尺的0cm刻度线与半径为5cm的量角器的0º线对齐,并让量角器沿直尺的边缘无滑动地滚动(如图),则直尺上的10cm刻度线对应量角器上的度数约为()A.90ºB.115ºC.125ºD.180ºCBA第3题图O-2-NMCBA(第16题)9如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.若⊙O的半径为1,∠AMN=60°,则下列结论不正确...的是()A.MN=433B.当MN与⊙O相切时,AM=3C.l1和l2的距离为2D.当∠MON=90°时,MN与⊙O相切10.如图,由等边三角形、正方形、圆组成的轴对称图案中,等边三角形与三个正方形的面积和的比值为()A.32B.1C.3D.332二、填空题11.如图,半圆O是一个量角器,AOB为一纸片,AB交半圆于点D,OB交半圆于点C,若点C、D、A在量角器上对应读数分别为160,70,45,则A的度数为.12.如图,⊙O与直线l1相离,圆心O到直线l1的距离OB=2,OA=4,将直线l1绕点A逆时针旋转30°后得到的直线l2刚好与⊙O相切于点C,则OC=.13、正六边形的边长为10cm,它的边心距等于________cm.14.用半径为30cm,圆心角为120°的扇形卷成一个无底的圆锥形筒,则这个圆锥形筒的底面半径为cm.15如图,半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为16.一副量角器与一块含30°锐角的三角板如图所示放置,三角板的顶点C恰好落在量角器的直径MN上,顶点A,B恰好落在量角器的圆弧上,且AB∥MN.若AB=8,则量角器的直径MN=.17.如图将弧BC沿弦BC折叠交直径AB于点D,若AD=5,DB=7,则BC的长是.18.如图,AB是⊙O的直径,弦BC=4㎝,F是弦BC的中点,∠ABC=60°,若动点E以1㎝/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t<16),连接EF,当△BEF是直角三角形DCBAO(第11题)-3-时,t(s)的值为三、解答题:19.如图,四边形ABCD内接于⊙O,并且AD是⊙O的直径,C是弧BD的中点,AB和DC的延长线交于⊙O外一点E.求证:BC=EC.20、在直径为20cm的圆中,有一弦长为16cm,求它所对的弓形的高。21、如图27-6,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过点D作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接OE,若BC=4,求△OEC的面积.22、已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.-4-23、先阅读材料,再解答问题:小明同学在学习与圆有关的角时了解到:在同圆或等圆中,同弧(或等弧)所对的圆周角相等.如图,点A、B、C、D均为⊙O上的点,则有∠C=∠D.小明还发现,若点E在⊙O外,且与点D在直线AB同侧,则有∠D∠E.请你参考小明得出的结论,解答下列问题:(1)如图1,在平面直角坐标系xOy中,点A的坐标为(0,7),点B的坐标为(0,3),点C的坐标为(3,0).①在图1中作出△ABC的外接圆(保留必要的作图痕迹,不写作法);②若在x轴的正半轴上有一点D,且∠ACB=∠ADB,则点D的坐标为;(2)如图2,在平面直角坐标系xOy中,点A的坐标为(0,m),点B的坐标为(0,n),其中mn0.点P为x轴正半轴上的一个动点,当∠APB达到最大时,直接写出此时点P的坐标.24、如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.-5-一、选择题1、A2、A3、B4、B5、B6、B7、D8、B9、B10、A二、填空题11、4512、213、5314、1015、16、4717、11418、4、7、9或12三、解答题19.证明:连结AC,.∵AD是⊙O的直径,∴∠ACD=90°=∠ACE.∵四边形ABCD内接于⊙O,∴∠D+∠ABC=180°,又∠ABC+∠EBC=180°,∴∠EBC=∠D.∵C是BD的中点,∴∠1=∠2,∴∠1+∠E=∠2+∠D=90°,∴∠E=∠D,∴∠EBC=∠E,∴BC=EC.20、一小于直径的弦所对的弓形有两个:劣弧弓形与优弧弓形.如图,HG为⊙O的直径,且HG⊥AB,AB=16cm,HG=20cm故所求弓形的高为4cm或16cm21、解:(1)证明:连接OD.∵等腰三角形ABC的底角为30°,∴∠ABC=∠A=30°.∵OB=OD,∴∠ABC=∠ODB=30°,∴∠A=∠ODB,∴OD∥AC,∴∠ODE=∠DEA=90°,∴OD⊥DE,∴DE是⊙O的切线.(2)连接CD.∵∠B=30°,∴∠COD=60°.又∵OD=OC,∴△ODC是等边三角形,∴∠ODC=60°,∴∠CDE=30°.∵BC=4,∴DC=OC=2.∵DE⊥AC,∴CE=1,DE=3,∴S△OEC=12CE·DE=12×1×3=32.-6-xyCBAO图523、解:(1)①如图5;…②点D的坐标为70,;(2)点P的坐标为0mn,.24、解:(1)连接PA,如图1所示.∵PO⊥AD,∴AO=DO.∵AD=2,∴OA=.∵点P坐标为(﹣1,0),∴OP=1.∴PA==2.∴BP=CP=2.∴B(﹣3,0),C(1,0).(2)连接AP,延长AP交⊙P于点M,连接MB、MC.如图2所示,线段MB、MC即为所求作.四边形ACMB是矩形.理由如下:∵△MCB由△ABC绕点P旋转180°所得,∴四边形ACMB是平行四边形.∵BC是⊙P的直径,∴∠CAB=90°.∴平行四边形ACMB是矩形.过点M作MH⊥BC,垂足为H,如图2所示.在△MHP和△AOP中,∵∠MHP=∠AOP,∠HPM=∠OPA,MP=AP,∴△MHP≌△AOP.∴MH=OA=,PH=PO=1.∴OH=2.∴点M的坐标为(﹣2,).(3)在旋转过程中∠MQG的大小不变.∵四边形ACMB是矩形,∴∠BMC=90°.∵EG⊥BO,∴∠BGE=90°.∴∠BMC=∠BGE=90°.∵点Q是BE的中点,∴QM=QE=QB=QG.∴点E、M、B、G在以点Q为圆心,QB为半径的圆上,如图3所示.∴∠MQG=2∠MBG.∵∠COA=90°,OC=1,OA=,∴∠OCA=60°.∴∠MBC=∠BCA=60°.∴∠MQG=120°.∴在旋转过程中∠MQG的大小不变,始终等于120°.-7-