实用标准文案文档一元二次方程重点题型一.选择题(共7小题)定义1.(2016•凉山州模拟)下列方程中,一元二次方程共有()个①x2﹣2x﹣1=0;②ax2+bx+c=0;③+3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.A.1B.2C.3D.4一般形式2.(2016春•荣成市期中)关于x的方程(m﹣3)x﹣mx+6=0是一元二次方程,则它的一次项系数是()A.﹣1B.1C.3D.3或﹣13.(2016春•宁国市期中)方程2x2﹣6x﹣9=0的二次项系数、一次项系数、常数项分别为()A.6;2;9B.2;﹣6;﹣9C.2;﹣6;9D.﹣2;6;9一元二次方程的解4.(2016•山西校级模拟)已知一元二次方程ax2+bx+c=0,若a+b+c=0,则该方程一定有一个根为()A.0B.1C.﹣1D.25.(2016•诏安县校级模拟)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.1或﹣1D.6.(2016•济宁校级模拟)一元二次方程ax2+bx+c=0,若4a﹣2b+c=0,则它的一个根是()A.﹣2B.C.﹣4D.27.(2015•诏安县校级模拟)方程(x﹣1)2=2的根是()A.﹣1,3B.1,﹣3C.,D.,二.填空题(共12小题)8.(2016春•长兴县月考)用配方法将方程x2+6x﹣7=0化为(x+m)2=n的形式为.9.(2016•罗平县校级模拟)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为.(9题)(10题)10.学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.若设小道的宽为x米,则可列方程为.11.(2016•丹东模拟)某药店响应国家政策,某品牌药连续两次降价,由开始每盒16元下降到每盒14元.设每次降价的平均百分率是x,则列出关于x的方程是.11.(2016•松江区二模)某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,那么根据题意可列关于x的方程是.12.(2016•萧山区模拟)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?实用标准文案文档15.(2015•东西湖区校级模拟)商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.据此规律计算:每件商品降价元时,商场日盈利可达到2100元.13.在一次同学聚会上,若每两人握一次手,一共握了45次手,则参加这次聚会的同学一共有名.16.(2015•东西湖区校级模拟)某种植物的主干长出若干数目的支干,每个支干又长出同样多数目的小分支,主干、支干、小分支一共是91个,则每个支干长出的小分支数目为.17.(2015春•乳山市期末)如图,一块矩形铁皮的长是宽的2倍,将这个铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,若盒子的容积是240cm3,则原铁皮的宽为cm.18.(2015秋•洪山区期中)卫生部门为控制流感的传染,对某种流感研究发现:若一人患了流感,经过两轮传染后共有100人患了流感,若按此传染速度,第三轮传染后,患流感人数共有人.19.(2015秋•临汾校级月考)如图,要建一个面积为130m2的仓库,仓库的一边靠墙(墙长16m)并在与墙平行的一边开一道1m宽的门,现有能围成32m长的木板,仓库的长和宽分别为m与m.三.解答题(共11小题)20.(2015春•沂源县期末)解下列方程:(1)x2﹣2x=2x+1(配方)(2)2x2﹣2x﹣5=0(公式)①x2﹣2x﹣8=0(因式分解)实用标准文案文档②(x﹣4)2=9(直接开)③2x2﹣4x﹣1=0(公式)④x2+8x﹣9=0(配方)22.(2015春•阜宁县期末)选用适当的方法解下列方程:(1)x2﹣6x=7(2)2x2﹣6x﹣1=0(3)3x(x+2)=5(x+2)23.(2016•唐河县一模)已知关于x的一元二次方程(m﹣2)x2+2mx+m+3=0有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.24.(2016•洛阳模拟)已知关于x的方程x2﹣2(m+1)x+m2=0(1)当m取什么值时,原方程没有实数根;(2)对m选取一个合适的非零整数,使原方程有两个不相等的实数根,并求出这两个实数根.25.(2016•信阳一模)已知关于x的一元二次方程x2﹣(k+3)x+3k=0.(1)求证:不论k取何实数,该方程总有实数根.(2)若等腰△ABC的一边长为2,另两边长恰好是方程的两个根,求△ABC的周长.26.(2016•西峡县二模)关于x的一元二次方程(m﹣1)x2+2x﹣3=0.(1)若原方程有两个不相等的实数根,求m的取值范围;(2)若原方程的一个根是1,求此时m的值及方程的另外一个根.实用标准文案文档27.(2016•平武县一模)已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根.(2)是否存在实数k使方程两根的倒数和为2?若存在,请求出k的值;若不存在,请说明理由.28.(2016•宛城区一模)已知关于x的方程mx2﹣(m+2)x+2=0(1)求证:不论m为何值,方程总有实数根;(2)若方程的一个根是2,求m的值及方程的另一个根.29.(2015秋•余干县校级期末)已知x2+y2+6x﹣4y+13=0,求(xy)﹣2.30.(2016•洪泽县一模)如图,要设计一本画册的封面,封面长40cm,宽30cm,正中央是一个与整个封面长宽比例相同的矩形画.如果要使四周的边衬所占面积是封面面积的,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(结果保留小数点后一位,参考数据:≈2.236).实用标准文案文档2016年06月03日2456000759的初中数学组卷参考答案与试题解析一.选择题(共7小题)1.(2016•凉山州模拟)下列方程中,一元二次方程共有()个①x2﹣2x﹣1=0;②ax2+bx+c=0;③+3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.A.1B.2C.3D.4【解答】解:①x2﹣2x﹣1=0,符合一元二次方程的定义;②ax2+bx+c=0,没有二次项系数不为0这个条件,不符合一元二次方程的定义;③+3x﹣5=0不是整式方程,不符合一元二次方程的定义;④﹣x2=0,符合一元二次方程的定义;⑤(x﹣1)2+y2=2,方程含有两个未知数,不符合一元二次方程的定义;⑥(x﹣1)(x﹣3)=x2,方程整理后,未知数的最高次数是1,不符合一元二次方程的定义.一元二次方程共有2个.故选:B.2.(2016春•荣成市期中)关于x的方程(m﹣3)x﹣mx+6=0是一元二次方程,则它的一次项系数是()A.﹣1B.1C.3D.3或﹣1【解答】解:由题意得:m2﹣2m﹣1=2,m﹣3≠0,解得m=±1.故选:B.3.(2016春•宁国市期中)方程2x2﹣6x﹣9=0的二次项系数、一次项系数、常数项分别为()A.6;2;9B.2;﹣6;﹣9C.2;﹣6;9D.﹣2;6;9【解答】解:∵方程一般形式是2x2﹣6x﹣9=0,∴二次项系数为2,一次项系数为﹣6,常数项为﹣9.故选B.4.(2016•山西校级模拟)已知一元二次方程ax2+bx+c=0,若a+b+c=0,则该方程一定有一个根为()A.0B.1C.﹣1D.2【解答】解:依题意,得c=﹣a﹣b,原方程化为ax2+bx﹣a﹣b=0,即a(x+1)(x﹣1)+b(x﹣1)=0,∴(x﹣1)(ax+a+b)=0,∴x=1为原方程的一个根,故选B.5.(2016•诏安县校级模拟)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.1或﹣1D.【解答】解:根据题意得:a2﹣1=0且a﹣1≠0,解得:a=﹣1.故选B.实用标准文案文档6.(2016•济宁校级模拟)一元二次方程ax2+bx+c=0,若4a﹣2b+c=0,则它的一个根是()A.﹣2B.C.﹣4D.2【解答】解:将x=﹣2代入ax2+bx+c=0的左边得:a×(﹣2)2+b×(﹣2)+c=4a﹣2b+c,∵4a﹣2b+c=0,∴x=﹣2是方程ax2+bx+c=0的根.故选A.7.(2015•诏安县校级模拟)方程(x﹣1)2=2的根是()A.﹣1,3B.1,﹣3C.,D.,【解答】解:x﹣1=±∴x=1±.故选C.二.填空题(共12小题)8.(2016春•长兴县月考)用配方法将方程x2+6x﹣7=0化为(x+m)2=n的形式为(x﹣3)2=2.【解答】解:移项,得x2﹣6x=﹣7,在方程两边加上一次项系数一半的平方得,x2﹣6x+9=﹣7+9,(x﹣3)2=2.故答案为:(x﹣3)2=2.9.(2016•罗平县校级模拟)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为(100﹣x)(80﹣x)=7644.【解答】解:设道路的宽应为x米,由题意有(100﹣x)(80﹣x)=7644,故答案为:(100﹣x)(80﹣x)=7644.10.(2016•丹东模拟)某药店响应国家政策,某品牌药连续两次降价,由开始每盒16元下降到每盒14元.设每次降价的平均百分率是x,则列出关于x的方程是16(1﹣x)2=14.【解答】解:设该药品平均每次降价的百分率是x,根据题意得16×(1﹣x)(1﹣x)=14,整理得:16(1﹣x)2=14.故答案为:16(1﹣x)2=14.11.(2016•松江区二模)某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,那么根据题意可列关于x的方程是289(1﹣x)2=256.【解答】解:根据题意可得两次降价后售价为289(1﹣x)2,即方程为289(1﹣x)2=256.故答案为:289(1﹣x)2=256.实用标准文案文档12.(2016•萧山区模拟)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?【解答】解:设每件降价为x元,则(60﹣x﹣40)(300+20x)=6080,得x2﹣5x+4=0,解得x=4或x=1,要使顾客实惠,则x=4,定价为60﹣4=56元.答:应将销售单价定位56元.13.(2016•南岗区模拟)在一次同学聚会上,若每两人握一次手,一共握了45次手,则参加这次聚会的同学一共有10名.【解答】解:设这次参加聚会的同学有x人,则每人应握(x﹣1)次手,由题意得:x(x﹣1)=45,即:x2﹣x﹣90=0,解得:x1=10,x2=﹣9(不符合题意舍去)故参加这次聚会的同学共有10人.故答案是:10.14.(2015•平定县一模)学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.若设小道的宽为x米,则可列方程为(35﹣2x)(20﹣x)=600(或2x2﹣75x+100=0).【解答】解:把阴影部分分别移到矩形的上边和左边可得矩形的长为(35﹣2x)米,宽为(20﹣x)米,∴可列方程为(35﹣2x)(20﹣x)=600(或2x2﹣75x+100=0),故答案为(35﹣2x)(20﹣x