二次函数基础分类练习题(练习一)1、一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s(米)与时间t(秒)的数据如下表:写出用t表示s的函数关系式.2、下列函数:①23yx=;②21yxxx;③224yxxx;④21yxx=+;⑤1yxx,其中是二次函数的是,其中a=,b=,c=3、当m时,函数2235ymxx(m为常数)是关于x的二次函数4、当____m时,函数()2221mmymmx--=+是关于x的二次函数5、当____m时,函数2564mmymx+3x是关于x的二次函数6、若点A(2,m)在函数12xy的图像上,则A点的坐标是____.7、在圆的面积公式S=πr2中,s与r的关系是()A、一次函数关系B、正比例函数关系C、反比例函数关系D、二次函数关系8、正方形铁片边长为15cm,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S(cm2)与小正方形边长x(cm)之间的函数关系式;(2)当小正方形边长为3cm时,求盒子的表面积.9、如图,矩形的长是4cm,宽是3cm,如果将长和宽都增加xcm,那么面积增加ycm2,①求y与x之间的函数关系式.时间t(秒)1234…距离s(米)281832…②求当边长增加多少时,面积增加8cm2.10、已知二次函数),0(2acaxy当x=1时,y=-1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为a米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1)如果设猪舍的宽AB为x米,则猪舍的总面积S(米2)与x有怎样的函数关系(2)请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC和宽AB的长度旧墙的长度是否会对猪舍的长度有影响怎样影响二次函数基础分类练习题(练习二)函数2axy的图象与性质1、填空:(1)抛物线221xy的对称轴是(或),顶点坐标是,当x时,y随x的增大而增大,当x时,y随x的增大而减小,当x=时,该函数有最值是;(2)抛物线221xy的对称轴是(或),顶点坐标是,当x时,y随x的增大而增大,当x时,y随x的增大而减小,当x=时,该函数有最值是;2、对于函数22xy下列说法:①当x取任何实数时,y的值总是正的;②x的值增大,y的值也增大;③y随x的增大而减小;④图象关于y轴对称.其中正确的是.3、抛物线y=-x2不具有的性质是()A、开口向下B、对称轴是y轴C、与y轴不相交D、最高点是原点4、苹果熟了,从树上落下所经过的路程s与下落时间t满足S=12gt2(g=),则s与t的函数图像大致是()ABCD5、函数2axy与baxy的图象可能是()A.B.C.D.6、已知函数24mmymx--=的图象是开口向下的抛物线,求m的值.7、二次函数12mmxy在其图象对称轴的左侧,y随x的增大而增大,求m的值.8、二次函数223xy,当x1>x2>0时,求y1与y2的大小关系.9、已知函数422mmxmy是关于x的二次函数,求:(1)满足条件的m的值;(2)m为何值时,抛物线有最低点求出这个最低点,这时x为何值时,y随x的增大而增大;(3)m为何值时,抛物线有最大值最大值是多少当x为何值时,y随x的增大而减小10、如果抛物线2yax=与直线1yx交于点(),2b,求这条抛物线所对应的二次函数的关系式.二次函数基础分类练习题(练习三)stOstOstOstO函数caxy2的图象与性质1、抛物线322xy的开口,对称轴是,顶点坐标是,当x时,y随x的增大而增大,当x时,y随x的增大而减小.2、将抛物线231xy向下平移2个单位得到的抛物线的解析式为,再向上平移3个单位得到的抛物线的解析式为,并分别写出这两个函数的顶点坐标、.3、任给一些不同的实数k,得到不同的抛物线kxy2,当k取0,1时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是.4、将抛物线122xy向上平移4个单位后,所得的抛物线是,当x=时,该抛物线有最(填大或小)值,是.5、已知函数2)(22xmmmxy的图象关于y轴对称,则m=________;6、二次函数caxy20a中,若当x取x1、x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值等于.二次函数基础分类练习题(练习四)函数2hxay的图象与性质1、抛物线2321xy,顶点坐标是,当x时,y随x的增大而减小,函数有最值.2、试写出抛物线23xy经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标.(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位.3、请你写出函数21xy和12xy具有的共同性质(至少2个).4、二次函数2hxay的图象如图:已知21a,OA=OC,试求该抛物线的解析式.5、抛物线2)3(3xy与x轴交点为A,与y轴交点为B,求A、B两点坐标及⊿AOB的面积.6、二次函数2)4(xay,当自变量x由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y随x值的变化情况.7、已知抛物线9)2(2xkxy的顶点在坐标轴上,求k的值.二次函数基础分类练习题(练习五)khxay2的图象与性质1、请写出一个二次函数以(2,3)为顶点,且开口向上.____________.2、二次函数y=(x-1)2+2,当x=____时,y有最小值.3、函数y=12(x-1)2+3,当x____时,函数值y随x的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x2的图象向平移3个单位,再向平移2个单位得到.5、已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是6、如图所示,抛物线顶点坐标是P(1,3),则函数y随自变量x的增大而减小的x的取值范围是()A、x3B、x3C、x1D、x17、已知函数9232xy.(1)确定下列抛物线的开口方向、对称轴和顶点坐标;(2)当x=时,抛物线有最值,是.(3)当x时,y随x的增大而增大;当x时,y随x的增大而减小.(4)求出该抛物线与x轴的交点坐标及两交点间距离;(5)求出该抛物线与y轴的交点坐标;(6)该函数图象可由23xy的图象经过怎样的平移得到的8、已知函数412xy.(1)指出函数图象的开口方向、对称轴和顶点坐标;(2)若图象与x轴的交点为A、B和与y轴的交点C,求△ABC的面积;(3)指出该函数的最值和增减性;(4)若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;(5)该抛物线经过怎样的平移能经过原点.(6)画出该函数图象,并根据图象回答:当x取何值时,函数值大于0;当x取何值时,函数值小于0.二次函数基础分类练习题(练习六)cbxaxy2的图象和性质1、抛物线942xxy的对称轴是.2、抛物线251222xxy的开口方向是,顶点坐标是.3、试写出一个开口方向向上,对称轴为直线x=-2,且与y轴的交点坐标为(0,3)的抛物线的解析式.4、将y=x2-2x+3化成y=a(x-h)2+k的形式,则y=____.5、把二次函数215322yxx的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662xxy与x轴交点的坐标为_________;7、函数xxy22有最____值,最值为_______;8、二次函数cbxxy2的图象沿x轴向左平移2个单位,再沿y轴向上平移3个单位,得到的图象的函数解析式为122xxy,则b与c分别等于()A、6,4B、-8,14C、-6,6D、-8,-149、二次函数122xxy的图象在x轴上截得的线段长为()A、22B、23C、32D、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)12212xxy;(2)2832xxy;(3)4412xxy11、把抛物线1422xxy沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62xxy的图象与x轴和y轴的交点坐标13、已知一次函数的图象过抛物线223yxx=++的顶点和坐标原点1)求一次函数的关系式;2)判断点2,5是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润最大利润是多少元二次函数基础分类练习题(练习七)cbxaxy2的性质1、函数2yxpxq=++的图象是以()3,2为顶点的一条抛物线,这个二次函数的表达式为2、二次函数2224ymxxmm=++-的图象经过原点,则此抛物线的顶点坐标是3、如果抛物线2yaxbxc=++与y轴交于点A(0,2),它的对称轴是1x=-,那么acb=4、抛物线cbxxy2与x轴的正半轴交于点A、B两点,与y轴交于点C,且线段AB的长为1,△ABC的面积为1,则b的值为______.示,5、已知二次函数cbxaxy2的图象如图所则a___0,b___0,c___0,acb42____0;6、二次函数cbxaxy2的图象如图,则直线bcaxy的图象不经过第象限.7、已知二次函数2yaxbxc=++(0a)的图象如图所示,则下列结论:1),ab同号;2)当1x=和3x=时,函数值相同;3)40ab+=;4)当2422bbacya时,x的值只能为0;其中正确的是8、已知二次函数2224mmxxy与反比例函数xmy42的图象在第二象限内的一个交点的横坐标是-2,则m=9、二次函数2yxaxb=++中,若0ab+=,则它的图象必经过点()A1,1B1,1C()1,1D1,110、函数baxy与cbxaxy2的图象如图所示,则下列选项中正确1的是()A、0,0cabB、0,0cabC、0,0cabD、0,0cab11、已知函数cbxaxy2的图象如图所示,则函数baxy的图象是()12、二次函数cbxaxy2的图象如图,那么abc、2a+b、a+b+c、a-b+c这四个代数式中,值为正数的有()A.4个B.3个C.2个D.1个13、抛物线的图角如图,则下列结论:①>0;②;③>;④<1.其中正确的结论是().(A)①②(B)②③(C)②④(D)③④14、二次函数2yaxbxc=++的最大值是3a-,且它的图象经过1,2,()1,6两点,求a、b、c15、试求抛物线2yaxbxc=++与x轴两个交点间的距离(240bac-)二次函数基础分类练习题(练习八)二次函数解析式1、抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,1)三点,则a=,b=,c=2、把抛物线y=x2+2x-3向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为.3、二次函数有最小值为1-,当0x=时,1y=,它的图象的对称轴为1x=,则函数的关系式为4、根据条件求二次函数的解析式(1)抛物线过(-1,-6)、(1,-2)和(2,3)三点(2)抛物线的顶点坐标为(-1,-1),且与y轴交点的纵坐标为-3(3)抛物线过(-1,0),(3,0),(1,-5)三点;(4)抛物线在x轴上截得的线段长为4,且顶点坐标是(3,-2);5、已知二次函数的图象经过()1,1-、()2,1两点,且与x轴仅有一个交点,求二次函数的解析