对数函数 典型例题(doc可编缉)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

对数函数例1求下列函数的定义域(1)y=log2(x2-4x-5);(2)y=logx+1(16-4x)(3)y=.解:(1)令x2-4x-5>0,得(x-5)(x+1)>0,故定义域为{x|x<-1,或x>5}.(2)令得故所求定义域为{x|-1<x<0,或0<x<2}.(3)令,得故所求定义域为{x|x<-1-,或-1-<x<-3,或x≥2}.说明求与对数函数有关的定义域问题,首先要考虑,真数大于零.底数大于零不等于1,若处在分母的位置,还要考虑不能使分母为零.例2求下列函数的单调区间.(1)y=log2(x-4);(2)y=log0.5x2.解:(1)定义域是(4,+∞),设t=x-4,当x>4时,t随x的增大而增大,而y=log2t,y又随t的增大而增大,∴(4,+∞)是y=log2(x-4)的递增区间.(2)定义域{x|x∈R,且x≠0},设t=x2,则y=log0.5t当x>0时,t随x的增大而增大,y随t的增大而减小,∴(0,+∞)是y=log0.5x2的递减区间.当x<0时,t随x的增大而减小,y随t的增大而减小,∴(-∞,0)是y=log0.5x2的递增区间.例3比较大小:(1)log0.71.3和log0.71.8.(2)(lgn)1.7和(lgn)2(n>1).(3)log23和log53.(4)log35和log64.解:(1)对数函数y=log0.7x在(0,+∞)内是减函数.因为1.3<1.8,所以log0.71.3>log0.71.8.(2)把lgn看作指数函数的底,本题归为比较两个指数函数的函数值的大小,故需对底数lgn讨论.若1>lgn>0,即1<n<10时,y=(lgn)x在R上是减函数,所以(lgn)1.2>(lgn)2;若lgn>1,即n>10时,y=(lgn)2在R上是增函数,所以(lgn)1.7>(lgn)2.(3)函数y=log2x和y=log5x当x>1时,y=log2x的图像在y=log5x图像上方.这里x=3,所以log23>log53.(4)log35和log64的底数和真数都不相同,须找出中间量“搭桥”,再利用对数函数的单调性即可求解.因为log35>log33=1=log66>log64,所以log35>log64.评析要注意正确利用对数函数的性质,尤其是第(3)小题,可直接利用例2中的说明得到结论.例4已知函数f(x)=loga(a-ax)(a>1),(1)求f(x)的定义域、值域.(2)判断并证明其单调性.(3)解不等式f-1(x2-2)>f(x).解:(1)要使函数有意义,必须满足a-ax>0,即axa.因为a>1,所以x<1;又因为0<a-ax<a,所以f(x)=loga(a-ax)(a>1)的值域为(-∞,1)(2)设x1<x2<1,则a<a<a(因为a>1).所以a-a>a-a>0,所以loga(a-a)>loga(a-a),即f(x1)>f(x2).所以f(x)这(-∞,1)上的减函数.(3)设y=loga(a-ax),则a-ax=ay,ax=a-ay,x=loga(a-ay),所以f-1(x)=loga(a-ax)(x∈(-∞,1)),f(x)=f-1(x).由f-1(x2-2)>f(x)有f(x2-2)>f(x),且f(x)为(-∞,1)上的减函数,所以x2-2<x,x<1,解得-1<x<1.评析知道函数值大小关系和函数单调性,要研究自变量取值范围,应直接用单调性得关于x的不等式,但要注意单调区间.例5已知f(x)=2+log3x,x∈[1,9],求y=[f(x)]2+f(x2)的最大值,及y取最大值时,x的值.分析要求函数y=[f(x)]2+f(x2)的最大值,要做两件事,一是要求其表达式;二是要求出它的定义域,然后求值域.解:∵f(x)=2+log3x,∴y=[f(x)]2+f(x2)=(2+log3x)2+2+log3x2=(2+log3x)2+2+2log3x=log23x+6log3x+6=(log3x+3)2-3.∵函数f(x)的定义域为[1,9],∴要使函数y=[f(x)]2+f(x2)有定义,就须∴1≤x≤3.∴0≤log3x≤1∴6≤y=(log3x+3)2-3≤13∴当x=3时,函数y=[f(x)]2+f(x2)取最大值13.说明本例正确求解的关键是:函数y=[f(x)]2+f(x2)定义域的正确确定.如果我们误认为[1,9]是它的定义域.则将求得错误的最大值22.其实我们还能求出函数y=[f(x)]2+f(x2)的值域为[6,13].例6(1)已知函数y=log3(x2-4mx+4m2+m+)的定义域为R,求实数m的取值范围;(2)已知函数y=loga[x2+(k+1)x-k+(a>0,且a≠1)的值域为R,求实数k的取值范围.点拨:题(1)中,对任意实数x,x2-4mx+4m2+m+>0恒成立;题(2)中,x2+(k+1)x-k+取尽一切正实数.解:(1)∵x2-4mx+4m2+m+>0对一切实数x恒成立,∴△=16m2-4(4m2+m+)=-4(m+)<0,∴>0.又∵m2-m+1>0,∴m-1>0,∴m>1.(2)∵y∈R,∴x2+(k+1)x-k+可取尽一切正实数.∴△=(k+1)2-4(-k+)≥0,∴k2+6k≥0,∴k≥0,或k≤-6.评析本题两小题的函数的定义域与值域正好错位.(1)中函数的定义域为R,由判别式小于零确保;(2)中函数的值域为R,由判别式不小于零确定.例7求函数y=log0.5(-x2+2x+8)的单调区间.分析由于对函数的底是一个小于1的正数,故原函数与函数u=-x2+2x+8(-2<x<4)的单调性相反.解.∵-x2+2x+8>0,∴-2<x<4,∴原函数的定义域为(-2,4).又∵函数u=-x2+2x+8=-(x-1)2+9在(-2,1]上为增函数,在[1,4)上为减函数,∴函数y=log0.5(-x2+2x+8)在(-2,1]上为减函数,在[1,4)上为增函数.评析判断函数的单调性必须先求出函数的定义域,单调区间应是定义域的子集.例8已知a>0且a≠1,f(logax)=·(x-x-1).(1)求f(x);(2)判断f(x)的奇偶性和单调性;(3)对于f(x),当x∈(-1,1)时,有f(1-m)+f(1-m2)<0,求m的取值范围.分析先用换元法求出f(x)的表达式;再利用有关函数的性质判断其奇偶性和单调性;然后利用以上结论解第(3)小题.解:(1)令t=logax(t∈R),则x=at,且f(t)=(at-a-t),∴f(x)=(ax-a-x)(x∈R).(2)∵f(-x)=(a-x-ax)=-f(x),且x∈R,∴f(x)为奇函数.a>1时,ax-a-x为增函数,并且注意到,∴这时,f(x)为增函数.0<a<1时,类似可证f(x)为增函数.∴f(x)在R上是增函数.(3)∵f(1-m)+f(1-m2)<0,且f(x)为奇函数.∴f(1-m)<f(m2-1).∵f(x)在(-1,1)上是增函数,∴∴1<m<.评析题(3)的求解脱离了f(x)的具体形式,仅用到前面得到的函数的性质

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功