2019年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.实数2019的相反数是()A.2019B.-2019C.20191D.201912.式子1x在实数范围内有意义,则x的取值范围是()A.x>0B.x≥-1C.x≥1D.x≤13.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.三个球中有黑球D.3个球中有白球4.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是()A.诚B.信C.友D.善5.如图是由5个相同的小正方体组成的几何体,该几何题的左视图是()6.“漏壶”是一种这个古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是()7.从1、2、3、4四个数中随机选取两个不同的数,分别记为a、c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率为()A.41B.31C.21D.328.已知反比例函数xky的图象分别位于第二、第四象限,A(x1,y1)、B(x2,y2)两点在该图象上,下列命题:①过点A作AC⊥x轴,C为垂足,连接OA.若△ACO的面积为3,则k=-6;②若x1<0<x2,则y1>y2;③若x1+x2=0,则y1+y2=0其中真命题个数是()A.0B.1C.2D.39.如图,AB是⊙O的直径,M、N是弧AB(异于A、B)上两点,C是弧MN上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是()A.2B.2C.23D.2510.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2-2aB.2a2-2a-2C.2a2-aD.2a2+a二、填空题(本大题共6个小题,每小题3分,共18分)11.计算16的结果是___________12.武汉市某气象观测点记录了5天的平均气温(单位:℃),分别是25、20、18、23、27,这组数据的中位数是___________13.计算411622aaa的结果是___________14.如图,在□ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为___________15.抛物线y=ax2+bx+c经过点A(-3,0)、B(4,0)两点,则关于x的一元二次方程a(x-1)2+c=b-bx的解是___________16.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC=PE问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=24.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是___________三、解答题(共8题,共72分)17.(本题8分)计算:(2x2)3-x2·x418.(本题8分)如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,求证:∠E=∠F19.(本题8分)为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)这次共抽取_________名学生进行统计调查,扇形统计图中,D类所对应的扇形圆心角的大小为__________(2)将条形统计图补充完整(3)该校共有1500名学生,估计该校表示“喜欢”的B类的学生大约有多少人?各类学生人数条形统计图各类学生人数扇形统计图20.(本题8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC(2)如图1,在边AB上画一点G,使∠AGD=∠BGC(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB21.(本题8分)已知AB是⊙O的直径,AM和BN是⊙O的两条切线,DC与⊙O相切于点E,分别交AM、BN于D、C两点(1)如图1,求证:AB2=4AD·BC(2)如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积22.(本题10分)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表:售价x(元/件)506080周销售量y(件)1008040周销售利润w(元)100016001600注:周销售利润=周销售量×(售价-进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围)②该商品进价是_________元/件;当售价是________元/件时,周销售利润最大,最大利润是__________元(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值23.(本题10分)在△ABC中,∠ABC=90°,nBCAB,M是BC上一点,连接AM(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q①如图2,若n=1,求证:BQBMPQCP②如图3,若M是BC的中点,直接写出tan∠BPQ的值(用含n的式子表示)24.(本题12分)已知抛物线C1:y=(x-1)2-4和C2:y=x2(1)如何将抛物线C1平移得到抛物线C2?(2)如图1,抛物线C1与x轴正半轴交于点A,直线bxy34经过点A,交抛物线C1于另一点B.请你在线段AB上取点P,过点P作直线PQ∥y轴交抛物线C1于点Q,连接AQ①若AP=AQ,求点P的横坐标②若PA=PQ,直接写出点P的横坐标(3)如图2,△MNE的顶点M、N在抛物线C2上,点M在点N右边,两条直线ME、NE与抛物线C2均有唯一公共点,ME、NE均与y轴不平行.若△MNE的面积为2,设M、N两点的横坐标分别为m、n,求m与n的数量关系2019年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.实数2019的相反数是()A.2019B.-2019C.20191D.20191答案:B考点:相反数。解析:2019的相反数为-2019,选B。2.式子1x在实数范围内有意义,则x的取值范围是()A.x>0B.x≥-1C.x≥1D.x≤1答案:C考点:二次根式。解析:由二次根式的定义可知,x-1≥0,所以,x≥1,选C。3.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.三个球中有黑球D.3个球中有白球答案:B考点:事件的判断。解析:因为袋中只有2个白球,所以,从袋子中一次摸出3个都是白球是不可能的,选B。4.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是()A.诚B.信C.友D.善答案:D考点:轴对称图形。解析:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形就是轴对称图形,如图,只有D才是轴对称图形。5.如图是由5个相同的小正方体组成的几何体,该几何题的左视图是()答案:A考点:三视图。解析:左面看,左边有上下2个正方形,右边只有1个正方形,所以,A符合。6.“漏壶”是一种这个古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是()答案:A考点:函数图象。解析:因为壶是一个圆柱,水从壶底小孔均匀漏出,水面的高度y是均匀的减少,所以,只有A符合。7.从1、2、3、4四个数中随机选取两个不同的数,分别记为a、c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率为()A.41B.31C.21D.32答案:C考点:概率,一元二次方程。解析:由一元二次方程ax2+4x+c=0有实数解,得:△=16-4ac=4(4-ac)≥0,即满足:4-ac≥0,随机选取两个不同的数a、c,记为(a,c),所有可能为:12341(1,2)(1,3)(1,4)2(2,1)(2,3)(2,4)3(3,1)(3,2)(3,4)4(4,1)(4,2)(4,3)共有12种,满足:4-ac≥0有6种,所以,所求的概率为:61122=,选C。8.已知反比例函数xky的图象分别位于第二、第四象限,A(x1,y1)、B(x2,y2)两点在该图象上,下列命题:①过点A作AC⊥x轴,C为垂足,连接OA.若△ACO的面积为3,则k=-6;②若x1<0<x2,则y1>y2;③若x1+x2=0,则y1+y2=0。其中真命题个数是()A.0B.1C.2D.3答案:D考点:反比例函数的图象。解析:反比例函数xky的图象分别位于第二、第四象限,所以,k〈0,设A(x,y),则△ACO的面积为:S=1|32xy|,又因为点A在函数图象上,所以,有:xyk=,所以,1|32k|,解得:k=-6,①正确。对于②,若x1<0<x2,则y1>0,y2〈0,所以,y1>y2成立,正确;对于③,由反比例函数的图象关于原点对称,所以,若x1+x2=0,则y1+y2=0成立,正确,选D。9.如图,AB是⊙O的直径,M、N是弧AB(异于A、B)上两点,C是弧MN上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是()A.2B.2C.23D.25答案:A考点:轨迹问题,弧长的计算。解析:连结BE,因为点E是∠ACB与∠CAB的交点,所以,点E是三角形ABC的内心,所以,BE平分∠ABC,因为AB为直径,所以,∠ACB=90°,所以,∠AEB=180°-12(∠CAB+∠CBA)=135°,为定值,所以,点E的轨迹是弓形AB上的圆弧,圆弧所以圆的圆心一定在弦AB的中垂线上,如下图,过圆心O作直径CD⊥AB,∠BDO=∠ADO=45°,在CD的延长线上,作DF=DA,则∠AFB=45°,即∠AFB+∠AEB=180°,A、E、B、F四点共圆,所以,∠DAE=∠DEA=°,所以,DE=DA=DF,所以,点D为弓形AB所在圆的圆心,设圆O的半径为R,则点C的运动路径长为:R,DA=2R,点E的运动路径为弧AEB,弧长为:90221802RR,C、E两点的运动路径长比为:222RR,选A。10.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2-2aB.2a2-2a-2C.2a2-aD.2a2+a答案:C考点:找规律,应用新知识解决问题。解析:250+251+252+…+299+2100=a+2a+22a+…+250a=a+(2+22+…+250)a=a+(251-2)a=a+(2a-2)a=2a2-a二、