优秀学习资料欢迎下载数列试题1.已知等比数列}{na的公比为正数,且3a·9a=225a,2a=1,则1a=()A.21B.。22C.2D.22.已知为等差数列,,则等于()A.-1B。1C.3D.73.公差不为零的等差数列{}na的前n项和为nS.若4a是37aa与的等比中项,832S,则10S等于()A.18B.24C。60D.90.4.设nS是等差数列na的前n项和,已知23a,611a,则7S等于()A.13B.35C。49D.635.等差数列{}na的前n项和为nS,且3S=6,1a=4,则公差d等于()A.1B53C。-2D36.已知na为等差数列,且7a-24a=-1,3a=0,则公差d=(A)-2(B)。-12(C)12(D)27.设等比数列{na}的前n项和为nS,若63SS=3,则69SS=(A)2(B)。73(C)83(D)38.等比数列na的前n项和为ns,且41a,22a,3a成等差数列。若1a=1,则4s=(A)7(B)8(c)。15(4)169.等差数列na的前n项和为nS,已知2110mmmaaa,2138mS,则m(A)38(B)20(C)。10(D)9.本题注意:因为na是等差数列,所以,112mmmaaa10.(本小题满分14分)设na是公差不为零的等差数列,nS为其前n项和,满足222223457,7aaaaS。求数列na的通项公式及前n项和nS;11。已知等差数列{na}中,,0,166473aaaa求{na}前n项和ns..优秀学习资料欢迎下载12。已知数列na的前n项和11()22nnnSa(n为正整数),令2nnnba,求证数列nb是等差数列,并求数列na的通项公式;13。.设数列na的前n项和为nS,对任意的正整数n,都有51nnaS成立,记*4()1nnnabnNa。(I)求数列na与数列nb的通项公式;(II)设数列nb的前n项和为nR,是否存在正整数k,使得4nRk成立?若存在,找出一个正整数k;若不存在,请说明理由;14设数列{}na的前n项和为,nS已知11,a142nnSa(I)设12nnnbaa,证明数列{}nb是等比数列(II)求数列{}na的通项公式。15等比数列{na}的前n项和为ns,已知1S,3S,2S成等差数列(1)求{na}的公比q;(2)求1a-3a=3,求ns16。已知数列}na满足,*11212,,2nnnaaaaanN’+2==.令1nnnbaa,证明:{}nb是等比数列;(Ⅱ)求}na的通项公式。17。已知112211,4,4,,nnnnnnaaaaaabnNa.(Ⅰ)求123,,bbb的值;.(Ⅱ)设1,nnnncbbS为数列nc的前n项和,求证:17nSn优秀学习资料欢迎下载答案:12在11()22nnnSa中,令n=1,可得1112nSaa,即112a当2n时,21111111()2()22nnnnnnnnnSaaSSaa,,11n1112a(),212nnnnnaaan即2.112,1,n21nnnnnnbabbbn即当时,b..又1121,ba数列nb是首项和公差均为1的等差数列.于是1(1)12,2nnnnnnbnnaa.13(I)当1n时,111151,4aSa又1151,51nnnnaSaS11115,4即nnnnnaaaaa∴数列na是首项为114a,公比为14q的等比数列,∴1()4nna,*14()4()11()4nnnbnN(II)不存在正整数k,使得4nRk成立。证明由(I)知14()5441(4)11()4nnnnb212212555201516408888.(4)1(4)1161164(161)(164)kkkkkkkkkbb∴当n为偶数时,设2()nmmN∴1234212()()()84nmmRbbbbbbmn当n为奇数时,设21()nmmN∴1234232221()()()8(1)4844nmmmRbbbbbbbmmn∴对于一切的正整数n,都有4nRk∴不存在正整数k,使得4nRk成立。14解由11,a及142nnSa,有12142,aaa21121325,23aabaa由142nnSa,...①则当2n时,有142nnSa.....②②-①得111144,22(2)nnnnnnnaaaaaaa优秀学习资料欢迎下载又12nnnbaa,12nnbb{}nb是首项13b,公比为2的等比数列.(II)由(I)可得11232nnnnbaa,113224nnnnaa数列{}2nna是首项为12,公差为34的等比数列.1331(1)22444nnann,2(31)2nnan15解:(Ⅰ)依题意有)(2)(2111111qaqaaqaaa由于01a,故022qq又0q,从而21-q(Ⅱ)由已知可得321211)(aa故41a从而))(()())((nnn211382112114S16(1)证1211,baa当2n时,1111,11()222nnnnnnnnnaabaaaaab所以nb是以1为首项,12为公比的等比数列。(2)解由(1)知111(),2nnnnbaa当2n时,121321()()()nnnaaaaaaaa21111()()22n111()2111()2n2211[1()]32n1521(),332n当1n时,111521()1332a。所以1*521()()332nnanN。.17。解:(Ⅰ)2344,17,72aaa,所以12317724.,417bbb(Ⅱ)由214nnnaaa得2114nnnnaaaa即114nnbb所以当2n≥时,4nb于是1121,17,4117(2)nnnncbbcbbbn≥所以1217nnScccn