第1页共4页金老师复习(2)一元二次方程(一)、一元二次方程的概念1.理解并掌握一元二次方程的意义未知数个数为1,未知数的最高次数为2,整式方程,可化为一般形式02cbxax(a0);2.正确识别一元二次方程中的各项及各项的系数(1)明确只有当二次项系数0a时,整式方程02cbxax才是一元二次方程。(2)各项的确定(包括各项的系数及各项的未知数).3.一元二次方程的解的定义与检验一元二次方程的解(二)、一元二次方程的解法1.明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,从而把一元二次方程转化为一元一次方程求解;2.根据方程系数的特点,熟练地选用配方法、开平方法、公式法、因式分解法等方法解一元二次方程;3.值得注意的几个问题:(1)开平方法:对于形如nx2或)0()(2anbax的一元二次方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用开平方法求解.形如nx2的方程的解法:当0n时,nx;当0n时,021xx;当0n时,方程无实数根。(2)配方法:通过配方的方法把一元二次方程转化为nmx2)(的方程,再运用开平方法求解。配方法的一般步骤:①移项:把一元二次方程中含有未知数的项移到方程的左边,常数项移到方程的右边;②“系数化1”:根据等式的性质把二次项的系数化为1;③配方:将方程两边分别加上一次项系数一半的平方,把方程变形为nmx2)(的形式;④求解:若0n时,方程的解为nmx,若0n时,方程无实数解。(3)公式法:一元二次方程)0(02acbxax的根aacbbx242当042acb时,方程有两个实数根,且这两个实数根不相等;当042acb时,方程有两个实数根,且这两个实数根相等,写为abxx221;当042acb时,方程无实数根.公式法的一般步骤:①把一元二次方程化为一般式;②确定cba,,的值;③代入acb42中计算其值,判断方程是否有实数根;④若042acb代入求根公式求值,否则,原方程无实数根。(4)因式分解法:因式分解法的一般步骤:若方程的右边不是零,则先移项,使方程的右边为零;把方程的左边分解因式;令每一个因式都为零,得到两个一元一次方程;解出这两个一元一次方程的解可得到原方程的两个解。第2页共4页(三)、根的判别式1.了解一元二次方程根的判别式概念,能用判别式判定根的情况,并会用判别式求一元二次方程中符合题意的参数取值范围。(1)=acb42(2)根的判别式定理及其逆定理:对于一元二次方程02cbxax(0a)①当时00a方程有实数根;②当时00a方程无实数根;从左到右为根的判别式定理;从右到左为根的判别式逆定理。例:求证:方程0)4(2)1(222aaxxa无实数根。(4)分类讨论思想的应用:如果方程给出的时未指明是二次方程,后面也未指明两个根,那一定要对方程进行分类讨论,如果二次系数为0,方程有可能是一元一次方程;如果二次项系数不为0,一元二次方程可能会有两个实数根或无实数根。(四)、一元二次方程的应用1.数字问题:解答这类问题要能正确地用代数式表示出多位数,奇偶数,连续整数等形式。2.几何问题:这类问题要结合几何图形的性质、特征、定理或法则来寻找等量关系,构建方程,对结果要结合几何知识检验。3.增长率问题(下降率):在此类问题中,一般有变化前的基数(a),增长率(x),变化的次数(n),变化后的基数(b),这四者之间的关系可以用公式bxan)1(表示。4.其它实际问题(都要注意检验解的实际意义,若不符合实际意义,则舍去)。(五)新题型与代几综合题(1)有100米长的篱笆材料,想围成一矩形仓库,要求面积不小于600平方米,在场地的北面有一堵50米的旧墙,有人用这个篱笆围成一个长40米、宽10米的仓库,但面积只有400平方米,不合要求,问应如何设计矩形的长与宽才能符合要求呢?(2)读诗词解题(列出方程,并估算出周瑜去世时的年龄):大江东去浪淘尽,千古风流数人物,而立之年督东吴,英年早逝两位数,十位恰小个位三,个位平方与寿符,哪位学子算得准,多少年华属周瑜?(3)已知:cba,,分别是ABC的三边长,当0m时,关于x的一元二次方程02)()(22axmmxbmxc有两个相等的实数根,求证:ABC是直角三角形。(4)已知:cba,,分别是ABC的三边长,求证:方程0)(222222cxacbxb没有实数根。(5)当m是什么整数时,关于x的一元二次方程0442xmx与0544422mmmxx的根都是整数?(6)已知关于x的方程02212222mxxmxx,其中m为实数,(1)当m为何值时,方程没有实数根?(2)当m为何值时,方程恰有三个互不相等的实数根?求出这三个实数根。答案:(1)2m(2)21,1x.(六)相关练习(一)一元二次方程的概念1.一元二次方程的项与各项系数第3页共4页把下列方程化为一元二次方程的一般形式,再写出二次项,一次项,常数项:(1)xx3252(2)22)3(4)15(aa2.应用一元二次方程的定义求待定系数或其它字母的值(1)m为何值时,关于x的方程mxmxmm4)3()2(2是一元二次方程。(2)若分式01872xxx,则x3.由方程的根的定义求字母或代数式值(1)关于x的一元二次方程01)1(22axxa有一个根为0,则a(2)已知关于x的一元二次方程)0(02acbxax有一个根为1,一个根为1,则cba,cba(二)一元二次方程的解法1.开平方法解下列方程:(1)289)3(1692x(2)0)31(2m2.配方法解方程:(1)0522xx(2)3422yy\3.公式法解下列方程:(1)2632xx(2)pp32324.因式分解法解下列方程:(1)04542yy(2)1)5(2)5(2xx(3)02172xx5.解法的灵活运用(用适当方法解下列方程):(1))3)(2()2(6xxxx(2)22)3(144)52(81xx(三)一元二次方程的根的判别式1.不解方程判别方程根的情况:(1)4xxx732(2)xx4)2(32(3)xx545422.k为何值时,关于x的二次方程0962xkx第4页共4页(1)有两个不等的实数根(2)有两个相等的实数根(3)无实数根3.k为何值时,方程0)3()32()1(2kxkxk有实数根.(四)一元二次方程的应用1.已知直角三角形三边长为三个连续整数,求它的三边长和面积.2.某印刷厂在四年中共印刷1997万册书,已知第一年印刷了342万册,第二年印刷了500万册,如果以后两年的增长率相同,那么这两年各印刷了多少万册?3.某商场销售一批名牌衬衫,平均每天可以售出20件,每件盈利40元,为了扩大销售增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?