1.1探索勾股定理2

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

(第2课时)2.如何验证勾股定理呢?1.上节课我们已经通过探索得到了勾股定理,请问勾股定理的内容是什么?据不完全统计,验证的方法有400多种,你想得到自己的方法吗?小组活动:请你利用自己准备的四个全等的直角三角形拼出以斜边为边长的正方形.有不同的拼法吗?拼图展示图1图2aaaabbbbcccc1.如图,你能表示大正方形的面积吗?能用两种方法表示吗?2.与有什么关系?为什么?(1)(2)ab214c22)(ba2)(baab214c2你能验证勾股定理了吗?图1aaaabbbbcccc22)(421baabc∴a²+b²=c²验证方法一图1你还能用图2进行验证吗?方法小结:我们利用拼图的方法,将形的问题与数的问题结合起来,再进行整式运算,从理论上验证了勾股定理.验证方法二22)(421cababc∴a²+b²=c²图2追溯历史用图2验证勾股定理的方法,据载最早是三国时期数学家赵爽在为《周髀算经》作注时给出的,我国历史上将图2弦上的正方形称为弦图。2002年的数学家大会(ICM-2002)在北京召开,这届大会会标的中央图案正是经过艺术处理的弦图,这既标志着中国古代的数学成就,又像一只转动的风车,欢迎来自世界各地的数学家们!国内调查组报告趣闻调查组报告在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景……他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使他循声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形……勾股定理的于是这位中年人不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。1876年4月1日,他在《新英格兰教育日志》上发表了他对勾股定理的这一证。1881年,这位中年人—伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。美国总统证法:bcabcaABCD生活中勾股定理的应用例题:飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?4Km20秒后ABC拓展练习1.如图是某沿江地区交通平面图,为了加快经济发展,该地区拟修建一条连接M,O,Q三城市的沿江高速,已知沿江高速的建设成本是100万元/千米,该沿江高速的造价预计是多少?生活中勾股定理的应用MPNOQ30Km40Km50Km120Km拓展练习2.如图,一个25m长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24m,如果梯子的顶端A沿墙下滑4m,那么梯子底端B也外移4m吗?生活中勾股定理的应用ABOCD拓展练习生活中勾股定理的应用3.如图,受台风麦莎影响,一棵高18m的大树断裂,树的顶部落在离树根底部6米处,这棵树折断后有多高?6米补充练习:1、放学以后,小红和小颖从学校分手,分别沿着东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖用20分钟到家,小红和小颖家的距离为()A、600米;B、800米;C、1000米;D、不能确定2、直角三角形两直角边分别为5厘米、12厘米,那么斜边上的高是()A、6厘米;B、8厘米;C、80/13厘米;D、60/13厘米;CD3、等腰三角形底边上的高为8,周长为32,求这个三角形的面积8XDABC解:设这个三角形为ABC,高为AD,设BD为X,则AB为(16-X),由勾股定理得:X2+82=(16-X)2即X2+64=256-32X+X2∴X=6∴S∆ABC=BC•AD/2=2•6•8/2=48C80602524BA4.如图所示是某机械零件的平面图,尺寸如图所示,求两孔中心A,B之间的距离.(单位:毫米)(3)如图在△ABC中,∠ACB=90º,CD⊥AB,D为垂足,AC=2.1cm,BC=2.8cm.求①△ABC的面积;②斜边AB的长;③斜边AB上的高CD的长。DABC通过本节课的学习

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功