数学试卷第1页(共38页)数学试卷第2页(共38页)绝密★启用前昆明市2018年初中学业水平考试数学(本试卷满分120分,考试时间120分钟)一、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上)1.在实数-3,0,1中,最大的数是.2.共享单车进入昆明市已两年,为市民的低碳出行带来了方便.据报道,昆明市共享单车投放量已达到240000辆,数字240000用科学记数法表示为.3.如图,过直线AB上一点O作射线OC,2918BOC,则AOC的度数为.4.若1=3mm,则221mm=.5.如图,点A的坐标为4,2。将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A,则过点A的正比例函数的解析式为.6.如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,做扇形ABF,则图中阴影部分的面积为(结果保留根号和π).二、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)7.下列几何体的左视图为长方形的是()A.B.C.D.8.关于x的一元二次方程223=0xxm有两个不相等的实数根,则实数m的取值范围是()A.m<3B.m>3C.3mD.3m9.黄金分割数512是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面.请你估算51的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间10.下列判断正确的是()A.甲乙两组学生身高的平均数均为1.58,方差分别为2s=2.3甲,2s=1.8乙,则甲组学生的身高较整齐B.为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000C.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:比赛成绩/分9.59.69.79.89.9参赛队个数98643则这30个参赛队决赛成绩的中位数是9.7D.有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件11.在△AOC中,OB交AC于点D,量角器的摆放如图所示,则CDO的度数为()毕业学校_____________姓名________________考生号___________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共38页)数学试卷第4页(共38页)A.90°B.95°C.100°D.120°12.下列运算正确的是()A.21=93B.03201881C.3232=60aaaaD.1812=613.甲、乙两船从相距300km的A,B两地同时出发相向而行。甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为km/hx,则求两船在静水中的速度可列方程为()A.180120=66xxB.180120=66xxC.180120=6xxD.180120=6xx14.如图,点A在双曲线=kyxx>0上,过点A作AB⊥x轴,垂足为点B。分别以点O和点A为圆心,大于12OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F0,2,连接AC。若AC=1,则k的值为()A.2B.3225C.435D.2525三、解答题(本大题共9小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分6分)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.16.(本小题满分7分)先化简,再求值:2111236aaa,其中°=tan601a.17.(本小题满分7分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他.该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度;(3)若该超市这一周内有1600名购物者,请你估计使用A和B两种支付方式的购买者共有多少名。18.(本小题满分6分)为了促进“足球进校园”活动的开展,某市举行了中学生足球比赛活动.现从A,B,C三支获胜足球队中,随机抽取两支球队分别到两所边远地区学校进行交流.(1)请用列表或画树状图的方法(只选择其中一种),表示出抽到的两支球队的所有可能结果;(2)求出抽到B队和C队参加交流活动的概率.19.(本小题满分7分)小婷在放学路上,看到隧道上方有一块宣传“中国——南亚博览会”的竖直标语牌数学试卷第5页(共38页)数学试卷第6页(共38页)CD。她在A点测得标语牌顶端D处的仰角为42°,测得隧道低端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=6.5m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,3≈1.73)20.(本小题满分8分)(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?21.(本小题满分8分)如图,AB是O的直径,ED切O于点C,AD交O于点F,AC平分∠BAD,连接BF.(1)求证:AD⊥ED;(2)若CD=4,AF=2,求O的半径.22.(本小题满分9分)如图,抛物线2=yaxbx过点B13,,对称轴是直线x=2,且抛物线与x轴的正半轴交于点A(1)求抛物线的解析式,并根据图象直接写出当0y时,自变量x的取值范围;(2)在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.23.(本小题满分12分)如图1,在矩形ABCD中,P为CD边上一点DPCP<,∠APB=90°.将△ADP沿AP翻折得到△ADP,PD的延长线交边AB于点M,过点B作BN∥MP交DC于点N.(1)求证:2ADDPPC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC,分别交PM,PB于点E,F.若12DPAD,求EFAE的值.毕业学校_____________姓名________________考生号___________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第7页(共38页)数学试卷第8页(共38页)昆明市2018年初中学业水平考试数学答案解析1.【答案】1【解析】∵1>0>-3,∴最大的数是1.【考点】实数大小比较.2.【答案】52.410【解析】240000=52.410【考点】科学记数法.3.【答案】150°42′°150.7或【解析】∵∠BOC=29°18′,∴∠AOC=180°-29°18′=150°42′.【考点】平角的定义、角的计算.4.【答案】7【解析】∵1=3mm,∴22211=2=92=7mmmm.【考点】代数式的求值、完全平方公式.5.【答案】4==43yxyx或【解析】点4,2A绕原点O顺时针旋转90°后对应点的坐标为24,,再向左平移1个单位长度得到点A′的坐标为14,,∴过A′14,的正比例函数的解析式为=4yx;点4,2A绕原点O逆时针旋转90°后对应点的坐标为2,4,再向左平移1个单位长度得到点A′的坐标为3,4,∴过A′3,4的正比例函数的解析式为4=3yx.【考点】旋转、平移、正比例函数的解析式.6.【答案】3323【解析】∵正六边形的边长为1,∴正六边形的面积为133316=222,21201==3603ABFS扇形,∴阴影部分的面积为3323.【考点】正六边形的面积、扇形面积的计算.5/197.【答案】C【解析】A中,球的左视图是圆,B中,圆台的左视图是等腰梯形,C中,圆柱的左视图是长方形,D中,圆锥的左视图是等腰三角形,故选C.【考点】几何体的左视图.8.【答案】A【解析】∵方程223=0xxm有两个不相等的实数根,∴2=2340m△>,解得m<3,故选A.【考点】一元二次方程根的判别式.9.【答案】B【解析】∵黄金分割数510.6182,则510.6182=1.236,故选B.【考点】无理数的估算.10.【答案】D【解析】∵22=2.31.8=SS乙甲>,∴乙组学生的身高比较整齐;抽取了100名学生的成绩进行调查,则样本容量是100;30个参赛队,决赛成绩位于第15和第16的都是9.6分,故中位数是9.6;∵一年有12个月,∴13名同学出生于2003年,至少有两名同学出生在同一个月是必然事件,故选D.【考点】数据的分析、方差、中位数、样本容量、必然事件.11.【答案】B【解析】由图可知,OA=OC,∠AOC=130°,∠DOC=60°,∴∠OCA=∠CAO=25°,∴∠CDO=180°-60°-25°=95°,故选B.【考点】三角形的内角和,等腰三角形的性质.12.【答案】C【解析】211=39,0320188=12=3,3232=60aaaa,1812=3223,故选C.【考点】整式,根式的运算.13.【答案】A【解析】根据甲船顺流航行180km和乙船逆流航行300180km的时间相等,可列方程180120=66xx,故选A.【考点】分式方程的实际应用.14.【答案】B【解析】由作图可知ED为线段OA的垂直平分线,设DE交OA于点I,∵AC=1,∴OC=1,∵点F0,2,数学试卷第11页(共38页)数学试卷第12页(共38页)∴OF=2,FC=5.∵∠OCI=∠FCO,∠FOC=∠OIC=90°,∴FOCOIC△△,∴OIOCFOFC,即1=25OI,解得OI=255,∴OA=455,∵∠AOB+∠FOA=90°,∠OFC+∠FOA=90°,∴∠AOB=∠OFC,∵∠OBA=∠FOC=90°,∴OABFCO△△,∴OAOBABFCFOCO,即455==215OBAB,∴OB=85,AB=45,∴8432==5525k,故选B.【考点】尺规作图,线段的垂直平分线的性质,相似三角形的判定与性质,勾股定理.15.【答案】证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC