第1页(共28页)2017-2018学年江苏省南京市联合体九年级(上)期末数学试卷一、选择题(共6小题,每小题2分,共12分)1.(2分)下列哪个方程是一元二次方程()A.2x+y=1B.x2+1=2xyC.x2+=3D.x2=2x﹣32.(2分)函数y=3(x﹣2)2+4的图象的顶点坐标是()A.(3,4)B.(﹣2,4)C.(2,4)D.(2,﹣4)3.(2分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分4.(2分)如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=ADB.BC=CDC.D.∠BCA=∠DCA5.(2分)如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)第2页(共28页)或(1,﹣2)6.(2分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差二、填空题(共10小题,每小题2分,共20分)7.(2分)若=,则=.8.(2分)⊙O的半径为4,圆心O到直线的距离为3,则直线与⊙O的位置关系是.9.(2分)若关于x的一元二次方程x2+4x+k﹣1=0有实数根,则k的取值范围是.10.(2分)若方程x2+2x﹣11=0的两根分别为m、n,则mn(m+n)=.11.(2分)已知点P是线段AB的黄金分割点,AP>PB.若AB=2,则AP=.12.(2分)若一个圆锥的侧面展开图是一个半径为3cm,圆心角为120°的扇形,则该圆锥的侧面面积为cm2(结果保留π).13.(2分)如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:AB=4:9,则S△ADE:S△ABC=.14.(2分)如图,已知矩形ABCD的顶点A、D分别落在x轴、y轴,OD=2OA=6,AD:AB=3:1.则点B的坐标是.第3页(共28页)15.(2分)如图,以正六边形ADHGFE的一边AD为边向外作正方形ABCD,则∠BED=°.16.(2分)如图,已知函数y=ax2+bx+c(a>0)的图象的对称轴经过点(2,0),且与x轴的一个交点坐标为(4,0).下列结论:①b2﹣4ac>0;②当x<2时,y随x增大而增大;③a﹣b+c<0;④抛物线过原点;⑤当0<x<4时,y<0.其中结论正确的是.(填序号)三、解答题(共11小题,共88分.解答时应写出文字说明、证明过程或演算步骤)17.(8分)解方程:(1)x2+2x﹣3=0;(2)x(x+1)=2(x+1).18.(6分)如图,已知AD•AC=AB•AE.求证:△ADE∽△ABC.19.(6分)已知抛物线的顶点坐标是(1,﹣4),且经过点(0,﹣3),求与该第4页(共28页)抛物线相应的二次函数表达式.20.(8分)初三(1)班要从2男2女共4名同学中选人做晨会的升旗手.(1)若从这4人中随机选1人,则所选的同学性别为男生的概率是.(2)若从这4人中随机选2人,求这2名同学性别相同的概率.21.(8分)某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:(1)请将下表补充完整:(参考公式:方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2])平均数方差中位数甲77乙5.4(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,的成绩好些;②从平均数和中位数相结合看,的成绩好些;③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.22.(8分)如图,大圆的弦AB、AC分别切小圆于点M、N.(1)求证:AB=AC;(2)若AB=8,求圆环的面积.第5页(共28页)23.(8分)如图,一电线杆AB的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN,量得其影长MF为0.5米,量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米.请利用小明测量的数据算出电线杆AB的高.24.(8分)如图,四边形ABCD是⊙O的内接四边形,=,AC为直径,DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)若AC=9,CE=3,求CD的长.25.(10分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x元,则商场日销售量增加件,每件商品,盈利元(用含x的代数式表示);第6页(共28页)(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?26.(8分)对于实数a,b,我们可以用min{a,b}表示a,b两数中较小的数,例如min{3,﹣1}=﹣1,min{2,2}=2.类似地,若函数y1、y2都是x的函数,则y=min{y1,y2}表示函数y1和y2的“取小函数”.(1)设y1=x,y2=,则函数y=min{x,}的图象应该是中的实线部分.(2)请在图1中用粗实线描出函数y=min{(x﹣2)2,(x+2)2}的图象,并写出该图象的三条不同性质:①;②;③;(3)函数y=min{(x﹣4)2,(x+2)2}的图象关于对称.27.(10分)如图,在△ABC中,AB=AC=10,∠B=30°,O是线段AB上的一个动点,以O为圆心,OB为半径作⊙O交BC于点D,过点D作直线AC的垂线,垂足为E.(1)求证:DE是⊙O的切线;(2)设OB=x,求∠ODE的内部与△ABC重合部分的面积y的最大值.第7页(共28页)2017-2018学年江苏省南京市联合体九年级(上)期末数学试卷参考答案与试题解析一、选择题(共6小题,每小题2分,共12分)1.(2分)下列哪个方程是一元二次方程()A.2x+y=1B.x2+1=2xyC.x2+=3D.x2=2x﹣3【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【解答】解:A、不是一元二次方程,故此选项错误;B、不是一元二次方程,故此选项错误;C、不是一元二次方程,故此选项错误;D、是一元二次方程,故此选项正确;故选:D.【点评】此题主要考查了一元二次方程定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.2.(2分)函数y=3(x﹣2)2+4的图象的顶点坐标是()A.(3,4)B.(﹣2,4)C.(2,4)D.(2,﹣4)【分析】由函数解析式即可求得答案.【解答】解:∵y=3(x﹣2)2+4,∴函数图象顶点坐标为(2,4),故选:C.第8页(共28页)【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为x=h.3.(2分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选:A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.4.(2分)如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=ADB.BC=CDC.D.∠BCA=∠DCA【分析】根据圆心角、弧、弦的关系对各选项进行逐一判断即可.【解答】解:A、∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;B、∵AC平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,故本选项正确;C、∵∠ACB与∠ACD的大小关系不确定,∴与不一定相等,故本选项错误;第9页(共28页)D、∠BCA与∠DCA的大小关系不确定,故本选项错误.故选:B.【点评】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.5.(2分)如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k解答.【解答】解:∵点A(﹣3,6),以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是(﹣1,2)或(1,﹣2),故选:D.【点评】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.6.(2分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差第10页(共28页)【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.【点评】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.二、填空题(共10小题,每小题2分,共20分)7.(2分)若=,则=﹣.【分析】根据比例设x=2k,y=3k(k≠0),然后代入比例式进行计算即可得解.【解答】解:∵=,∴设x=2k,y=3k(k≠0),则==﹣.故答案为:﹣.【点评】本题考查了比例的性质,利用“设k法”求解更简便.8.(2分)⊙O的半径为4,圆心O到直线的距离为3,则直线与⊙O的位置关系是相交.【分析】由⊙O的半径为4,圆心O到直线l的距离为3,利用直线和圆的位置关系:若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离判断即可求得答案.第11页(共28页)【解答】解:∵⊙O的半径为4,圆心O到直线l的距离为3,又∵3<4,∴直线l与⊙O的位置关系是:相交.故答案为:相交.【点评】此题考查了直线与圆的位置关系,注意解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.9.(2分)若关于x的一元二次方程x2+4x+k﹣1=0有实数根,则k的取值范围是k≤5.【分析】根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.【解答】解:∵关于x的一元二次方程x2+4x+k﹣1=0有实数根,∴△=42﹣4(k﹣1)≥0,解得:k≤5.故答案为:k≤5.【点评】本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.10.(2分)若方程x2+2x﹣11=0的两根分别为m、n,则mn(m+n)=22.【分析】根据根与系数的关系可得出m+n=﹣2、mn=﹣11,将其代入mn(m+n)中即可求出结论.【解答】解:∵方程x2+2x﹣11=0的两根分别为m、n,∴m+n=﹣2,mn=﹣11,∴mn(m+n)=﹣2×(﹣11)=22.故答案为:22.【点评