实用精品文献资料分享七年级上册数学期中知识点复习七年级上册数学期中知识点复习1.1正数与负数正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)负数:在以前学过的0以外的数前面加上负号“―”的数叫负数。与正数具有相反意义。0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。3、相反数:只有符号不同的两个数叫做互为相反数。(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,数的绝对值是两点间的距离。(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。1.3有理数的加减法有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。3、一个数同0相加,仍得这个数。实用精品文献资料分享加法的交换律和结合律有理数减法法则:减去一个数,等于加这个数的相反数。1.4有理数的乘除法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。乘法交换律/结合律/分配律有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。1.5有理数的乘方1、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。2、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。3、把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a10。4、从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。四舍五入遵从精确到哪一位就从这一位的下一位开始,而不是从数字的末尾往前四舍五入。比如:3.5449精确到0.01就是3.54而不是3.55.第二章整式的加减2.1整式1、单项式:由数字和字母乘积组成的式子。系数,单项式的次数.单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.2、单项式的系数:是指单项式中的数字因数;实用精品文献资料分享3、单项数的次数:是指单项式中所有字母的指数的和.4、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。多项式的次数是指多项式里次数最高项的次数,这里七年级上册数学期中知识点复习是次数最高项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包括它前面的性质符号.5、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。6、单项式和多项式统称为整式。2.2整式的加减1、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。2、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关3、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。6、整式加减的一般步骤:一去、二找、三合(1)如果遇到括号按去括号法则先去括号.(2)结合同类项.(3)合并同类项