结构力学中南大学返回退出10:50§14-1概述§14-2结构的振动自由度§14-3单自由度结构的自由振动§14-4单自由度结构在简谐荷载作用下的强迫振动§14-5单自由度结构在任意荷载作用下的强迫振动§14-6多自由度结构的自由振动第十四章结构动力学结构力学中南大学返回退出10:50§14-7多自由度结构在简谐荷载作用下的强迫振动§14-8振型分解法§14-9无限自由度结构的振动§14-10计算频率的近似方法结构力学中南大学返回退出10:50静力荷载:大小、方向和作用位置不随时间变化,或变化非常缓慢,不会促使结构产生显著的运动状态的变化,结构将处于平衡状态。计算平衡状态下结构的内力和变形问题称为静力计算。注意:区分静力荷载与动力荷载,不是单纯从荷载本身性质来看,要看其对结构产生的影响。一、结构动力计算的特点和任务1.动力荷载与静力荷载的区别:随时间变化的结构的位移和内力,称为动位移和动内力,并称为动力反应。计算动力荷载作用下结构的动力反应问题,称为动力计算。动力荷载(干扰力):随时间迅速变化的荷载§14-1概述结构力学中南大学返回退出10:50结构动力计算的特点:在动力荷载作用下,结构将产生振动,其位移和内力都是随时间变化的。在运动过程中,结构的质量具有加速度,必须考虑惯性力的作用。考虑惯性力的作用是结构动力计算的最主要特征。结构静力计算的特点:结构的位移和内力只取决于静力荷载的大小及其分布规律,与时间无关。2.结构动力计算的特点3.结构动力计算可分为两大类:自由振动:结构受到外部因素干扰发生振动,而在以后的振动过程中不再受外部干扰力作用。强迫振动:如果结构在振动过程中还不断受到外部干扰力作用,则称为强迫振动。4.结构动力计算的任务:(2)分析计算动力荷载作用下结构的动力反应,确定动力荷载作用下结构的位移、内力等量值随时间而变化的规律,从而找出其最大值以作为设计的依据。(1)分析计算自由振动,得到的结构的动力特性(自振频率、振型和阻尼参数);§14-1概述结构力学中南大学返回退出10:50周期荷载——随时间周期地变化的荷载。其中最简单、最重要的是简谐荷载(按弦或余弦函数规律变化)。二、动力荷载的分类toF(t)F简谐荷载rml/Fθt2l/21.周期荷载非简谐性周期荷载例:打桩时落锤撞击所产生的荷载。o周期撞击荷载F(t)t§14-1概述结构力学中南大学返回退出10:50在很短的时间内,荷载值急剧减小(或增加),如爆炸时所产生的荷载。oF(t)FoFF(t)rttttr2.冲击荷载3.突加常量荷载突然作用于结构上、荷载值在较长时间内保持不变。例:起重机起吊重物时所产生的荷载。oF(t)Ft上述荷载是时间的确定函数,称之为确定性动力荷载。§14-1概述结构力学中南大学返回退出10:50随机荷载(非确定性荷载)——荷载的变化极不规则,在任—时刻的数值无法预测。地震荷载和风荷载都是随机荷载。toF(t)随机荷载(非确定性荷载)4.随机荷载§14-1概述结构力学中南大学返回退出10:50结构振动的自由度:结构在弹性变形过程中确定全部质点位置所需的独立参数的数目t()ym单自由度结构多自由度结构(自由度大于1的结构)(a)(b)(c)3()yt()()2ytyt1()(a)(b)§14-2结构振动的自由度结构力学中南大学返回退出10:50当梁本身的质量远小于电动机的质量时,可以不计梁本身的质量,同时不考虑梁的轴向变形和质点的转动,则梁上质点的位置只需由挠度y(t)就可确定。t()ymml()ytm由质点竖向挠度为独立参数的单自由度结构确定绝对刚性杆件上三个质点的位置只需杆件转角(t)便可,故为单自由度结构。aEI=∞m3am2m1aaaaEI=∞θθθθθ§14-2结构振动的自由度结构力学中南大学返回退出10:50虽然只有一个集中质点,但其位置需由水平位移x和竖向位移y两个独立参数才能确定,因此振动自由度等于2,为多自由度体系。三层平面刚架横梁的刚度可看作无穷大,结构振动时横梁不能竖向移动和转动而只能作水平移动,故振动自由度等于3,多自由度体系。(a)(b)(c)3()yt()()2ytyt1()(a)(b)xy§14-2结构振动的自由度结构力学中南大学返回退出10:50分析刚架的振动自由度时,仍可引用受弯直杆任意两点之间的距离保持不变的假定,即略去杆件的轴向变形。因此,可采用施加刚性链杆法来确定结构的振动自由度。刚性链杆法:在结构上施加最少数量的刚性链杆以限制刚架上所有质点的位置,则该刚架的自由度数即等于所加链杆数目。具有两个集中质量,加入三根链杆即能使各质量固定不动其振动自由度为3。注意:体系振动自由度的数目不完全取决于质点的数目,也与体系是否静定或超静定无关。体系的自由度数目与计算假定和计算精度有关。如果考虑质点的转动惯性,还应增加控制转动的约束,才能确定结构的振动自由度数目。§14-2结构振动的自由度结构力学中南大学返回退出10:50实际结构中,除有较大的集中质量外,还有连续分布的质量。对此,需要采用一定的简化措施,把无限多自由度的问题简化为单自由度或者有限多自由度的问题进行计算集中质量法:把体系的连续分布质量集中为有限个集中质量(实际上是质点),把原来是无限自由度的问题简化成为有限自由度的问题。简化方法有多种,如集中质量法、广义坐标法和有限元法等。本章重点讨论集中质量法。水塔的质量大部分集中在塔顶上,可简化成以x(t)为位移参数的单自由度结构。xm§14-2结构振动的自由度结构力学中南大学返回退出10:50凡属需要考虑杆件本身质量(称为质量杆)的结构都是无限自由度体系。例:用集中质量法将连续分布质量的简支梁简化为有限自由度体系。将梁二等分,集中成三个集中质量,单自由度体系。lmmxxxl/mytml/yy12l/(a)(b)(c)(d)(e)(f)dd2l/23ml/3ml/6ml/63l/3l/3()/2ml/4ml/4mllmmxxxl/mytml/yy12l/(a)(b)(c)(d)(e)(f)ddml/42l/23ml/3ml/6ml/63l/3l/3()ml/4ml/2将梁三等分,质量集中成四个集中质量的两个自由度体系。lmmxxxl/mytml/yy12l/(a)(b)(c)(d)(e)(f)ddml/42l/2ml/3ml/ml/6l/l/()ml/4ml/236333§14-2结构振动的自由度结构力学中南大学返回退出10:50自由振动:结构在振动进程中不受外部干扰力作用的振动形式。产生自由振动的原因:结构在振动初始时刻受到干扰。初始干扰的形式:(1)结构具有初始位移(2)结构具有初始速度(3)上述二者同时存在1.不考虑阻尼时的自由振动对于各种单自由度体系的振动状态,都可以用一个简单的质点弹簧模型来描述。静平衡位置yxmWFtS()FtI()dy11kmstΔm静平衡位置dyWFtS()FtI()dy11kmstΔm静平衡位置dy梁在质点重量W作用下的挠曲线称为“静平衡位置”。WFtS()FtI()dy11kmstΔm静平衡位置dy§14-3单自由度结构的自由振动结构力学中南大学返回退出10:50取图示质点弹簧体系中质点的静力平衡位置为计算位移的原点,并规定位移y和质点所受的力都以向下为正。设弹簧发生单位位移时所需加的力为k11,称为弹簧的刚度;单位力作用下弹簧产生的位移为δ11,称为弹簧的柔度,k11与δ11二者之间满足:11111kWFtS()FtI()dy11kmstΔm静平衡位置dy无重悬臂梁、无重简支梁简化单弹簧体系时,弹簧的刚度系数k11各等于多少?思考:简支梁:31148lEIk悬臂梁:答:3113lEIk§14-3单自由度结构的自由振动结构力学中南大学返回退出10:50为了寻求结构振动时其位移以及各种量值随时间变化的规律,需要先建立其振动微分方程,然后求解。振动微分方程的建立方法:(1)刚度法。即列动力平衡方程。设质点m在振动的任一时刻位移为y,取质点m为隔离体,不考虑质点运动时受到的阻力,则作用于质点m上的力有:(a)弹簧恢复力11kycF该力有将质点拉回静力平衡位置的趋势,负号表示其方向恒与位移y的方向相反,即永远指向静力平衡位置。(b)惯性力my1F负号表示其方向恒与加速度的方向相反22dyydt对于弹簧处于静力平衡位置时的初拉力,恒与质点的重量mg向平衡而抵消,故振动过程中这两个力都毋须考虑。§14-3单自由度结构的自由振动结构力学中南大学返回退出10:50m()1Ft()cFtdy11kmstΔm静平衡位置dyy质点在惯性力F1和恢复力Fc作用下维持平衡,则有:10cFF110myky或110myky将F1和Fc的表达式代入令211km(14-1)有20yy(14-2)单自由度结构自由振动微分方程§14-3单自由度结构的自由振动结构力学中南大学返回退出10:50(2)柔度法。即列位移方程。当质点m振动时,把惯性力看作静力荷载作用在体系的质量上,则在其作用下结构在质点处的位移y应当为:11111yFmy即110myky同刚度法所得方程此二阶线性常系数齐次微分方程的通解为:12cossinytAtAt(a)12sincosytAtAt(b)由初始条件t=0时,有0yy0yy02vA10Ay可得到有00cossinyyytt(14-3)§14-3单自由度结构的自由振动结构力学中南大学返回退出10:50可见:单自由度体系无阻尼的自由振动是简谐振动。令,0cosva0sinya有sin()yat(14-4)2200100tanvayyv(14-6)其中cos()yat(14-5)()()ytTyt位移满足周期运动的下列条件:a表示质量m的最大动位移,称为振幅。其由常数ω、初始条件y0和v0决定的。φ是初始位置的相位角,称为初相角。它也取决于常数ω、初始条件y0和v0。T称为结构的自振周期,其常用的单位为秒(s)。自振周期的倒数代表每秒钟内的振动次数,称为工程频率,记作f,其单位为1/秒(s-1),或称为赫兹(Hz)。2T(14-7)12fT§14-3单自由度结构的自由振动结构力学中南大学返回退出10:50表示2π秒内的振动次数,是结构动力性能的一个很重要的标志。ω的单位为弧度/秒(rad/s),亦常简写为1/s(s-1)。从圆周运动的角度来看,称它为圆频率,一般称ω为自振频率。22fT根据式(14-1),可给出结构自振频率ω的计算公式如下:111111st1kggmmWΔst1122ΔmTkg相应地,结构的自振周期T的计算公式为:式中g表示重力加速度,Δst表示由于重量mg所产生的静力位移。结构的自振频率和周期只取决于它自身的质量和刚度,与初始条件及外界的干扰因素无关,它反映着结构固有的动力特性。(14-8)§14-3单自由度结构的自由振动结构力学中南大学返回退出10:50解:三种支承情况的梁均为单自由度体系。例14-1图示为三种不同支承情况的单跨梁,EI=常数,在梁中点有一集中质量m,当不考虑梁的质量时,试比较三者的自振频率。1348EIml31st48mglΔEI237867EIml32st7768mglΔEI33192EIml33st192mglΔEI据此可得123::1:1.51:2随着结构刚度的加大,其自振频率也相应地增高。ll22ll22mm2ll2m111111st1kggmmWΔ§14-3单自由度结构的自由振动结构力学中南大学返回退出10:502.考虑阻尼时的自由振动物体的自由振动由于各种阻力的作用将逐渐衰减下去而不能无限延续。阻力可分为两种:一种是外部介质的阻力;另一种来源于物体内部的作用。这些统称为阻尼力。通常引用福格第假定,即近似认为振动中物体所受阻尼力与其振动速度成正比,称为粘滞阻尼力,即:R