数据分析师岗位职责

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

数据分析师岗位职责【篇一:数据分析员岗位职责及绩薪模式】12【篇二:数据分析师职位要求】做数据分析前我们首先要明确分析目的和内容,对于数据分析师而言,他们的进阶需求无外乎是各个企业对数据分析师的职位要求。在前程无忧、中华英才网以及智联招聘上,我们随便搜索下数据分析的岗位信息,都能找到大量类似于下面的一些职位要求信息:别看岗位职责,任职要求这么多,说白了主要就三点要求:1)对相关业务的理解;2)掌握一到二种数据分析工具;3)良好的沟通。可能不同的公司因为需求不同,会在要求上有点小小的不同,而这个不同主要集中在数据库上。了解数据分析师的具体需求之前,我们有必要先了解数据分析师的职位体系。数据分析师的职位体系在传统行业中,数据分析更多存在移动、银行、超市等行业,在这些行业中你才会偶尔听到数据分析师这个职位,也许更多是听到数据挖掘工程师、数据建模师。在中国也许只在电信的项目中,才会存在真正的意义上的数据挖掘。数据行业从广义上讲可以分为以下几个职位:1、数据分析师更注意是对数据、数据指标的解读,通过对数据的分析,来解决商业问题。主要有以下几个次层次:1)业务监控:诊断当前业务是否正常?是否存在问题?业务发展是否达到预期(kpi)?如果没有达到预期,问主要问题在哪?是什么原因引起的?2)建立分析体系:这些数据分析师已经对业务有一定的理解,对业务也相对比较熟悉,更多帮业务方建立一套分析体系,或者更高级是做成数据产品。例如:营销活动。分析师会告诉业务方,在活动前你应该分析哪些数据,从而制定恰当的营销计划。在营销过程中,你应该看哪些数据,从而及时做出营销活动调整。在营销活动,应该如何进行活动效果评估。3)行业未来发展的趋势分析:这应该是数据分析师最高级别,有的公司叫做战略分析师/商业分析师。这个层次的数据分析师站的更高,在行业、宏观的层面进行业务分析,预测未来行业的发展,竞争对手的业务构成,帮助公司制定战略发展计划,并及时跟踪、分析市场动态,从而及时对战略进行不断优化。主要技能要求:数据库知识(sql至少要熟悉)、基本的统计分析知识、excel要相当熟悉,对spss或sas有一定的了解,对于与网站相关的业务还可能要求掌握ga等网站分析工具,当然ppt也是必备的。2、数据挖掘工程师更多是通过对海量数据进行挖掘,寻找数据的存在模式、或者说规律,从而通过数据挖掘来解决具体问题。数据挖掘更多是针对某一个具体的问题,是以解决具体问题为导向的。例如:聚类分析,通过对于会员各种人口统计学、行为数据进行分析,对会员进行分类,对不同的类型的会员建立相应的profiling,从而更好的理解会员,知道公司会员是到底如何?高、中、低低价值的会员构成,既可以后期各种会员的运营提供指导,提高活动效率,可以指导公司的营销,例如广告的投放策略。以及用于公司各种战略的制定。主要技能要求:1)数据库必须精通。很多时候,你模型的数据预处理,可能完成在数据库里完成,你用到的数据库技巧更高。2)必须要会成熟的数据挖掘工具、数据挖掘算法,例如:spss/celementine、sas/em等,当然如果你会一、二款开源软件,并会写一些程序代码那是最好的,大公司都喜欢用开源的软件,例如:r、weka。3、数据建模师当然二者有一个共同之处都是,针对很具体的问题,都是会解决某个具体问题,例如:营销反应率,你就可能历史的邮箱、短信的反应情况,来建模型进行预测,从而提高邮件反应率,或者减少对用户来说的“垃圾”邮箱,提高用户体验。所以从掌握的技能上讲,这二者就有很大的区别,数据建模师其实很少会提到算法这个词,更多说使用什么模型,有感觉吗?但是从实务界来看,这二个模型越来越没有明确的分工,一般来说都会二个职位的人都会去学习对方的知识,所以这二个职位有合并的趋势,但在未来几年来,我觉得公司要招人的时候应该还是要有区别的。新进入数据行业的同学,可以根据自己的背景背景选择相应的职位,学数据、统计学的朋友更多可以偏向于建模师,而计算机特别是写编程出现和同学,可以走数据挖掘工程师,也许适应性更好,但这不是绝对的。数据分析师的职位级别划分不同公司对数据分析师的职位划分骚有不同,在一些中小型企业,没有成立独立的数据中心前,数据分析的相关职位往往是在譬如市场部、运营部这些部门之下,通常数据分析成员在2-4人不等。对于一些大型企业,有独立的数据部门的企业,其数据分析团队人员则是十到百人不等,其职位头衔有通俗的总监、经理、主管划分,也有助理、资深、专家之类的划分。下面是一张微博上传的比较火的某集团的数据分析师职位级别划分图表,大家可根据自身的情况对号入座。(下图来自微博阿里的朋友分享)【篇三:数据分析师的岗位职责和绩效标准】数据分析师的岗位职责和绩效标准岗位职责:1.梳理运营与推广的业务需求,制定数据报表2.挖掘数据背后的市场方向、规律、短板,为业务提供决策依据;3.针对具体的业务事件,研究业务开拓中的局限性或亮点,进行数据分析并提出优化方案或提炼可复制的模板;4.分析运营与推广需求,固化常规数据报表,提升数据支持运营与推广的能力5.通过数据分析工具,高效支持业务端的数据查询需求,包括经营数据,会员数据的查询等。6.数据研究与分析,通过挖掘数据的内在关系,发现运营与推广中的问题,并推动问题的解决7、满足业务方对数据的各类取、过滤、分析等需求。8、

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功