半导体物理基础知识

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

MicroelectronicCircuit:AnalysisandDesign电子线路:指包含电子器件、并能对电信号实现某种处理的功能电路。概述电路组成:电子器件+外围电路电子器件:二极管、三极管、场效应管、集成电路。外围电路:直流电源、电阻、电容、电流源电路等。MicroelectronicCircuit:AnalysisandDesignNotationMicroelectronicCircuit:AnalysisandDesignNotationMicroelectronicCircuit:AnalysisandDesignNotationMicroelectronicCircuit:AnalysisandDesign2.1Introduction•Adiodesisatwo-terminalsemiconductordevice.ItoffersalowresistanceonorderofminonedirectionandahighresistanceonorderofGinotherdirection.•AdiodepermitsaneasycurrentflowinonlyonedirectionMicroelectronicCircuit:AnalysisandDesign2.1IntroductionIdealdiodeMicroelectronicCircuit:AnalysisandDesign2.2IdealDiodes•Forwardbiasd:ShortcircuitMicroelectronicCircuit:AnalysisandDesign2.2IdealDiodes•Reversebiased:OpencircuitMicroelectronicCircuit:AnalysisandDesignExample2.1•ApplicationasadiodeORlogicfunction:Ifbothinputshave0V(logic0)Bothdiodeswillbeoff,andtheoutputVcwillbe0V,ifeitherVA,,VBishigh(+5V),Vcwillbehigh(+5V).MicroelectronicCircuit:AnalysisandDesignExample2.1•ApplicationasadiodeANDlogicfunction:IfinputVA,VB,orbothis0V,thecorrespondingDiodewillconduct,andtheoutputvoltagewillbe0V.ifbothinputarehigh,bothdiodeswillbereversebiased,andtheoutputvoltagewillbehigh.MicroelectronicCircuit:AnalysisandDesignExample2.3MicroelectronicCircuit:AnalysisandDesignExample2.3MicroelectronicCircuit:AnalysisandDesign2.3TransferCharacteristicofDiodeCircuits•Thetransfercharacteristicofacircuitistherelationshipbetweentheoutputvoltageandtheinputvoltage.MicroelectronicCircuit:AnalysisandDesign2.3TransferCharacteristicofDiodeCircuitsMicroelectronicCircuit:AnalysisandDesign2.3TransferCharacteristicofDiodeCircuitsMicroelectronicCircuit:AnalysisandDesign2.3TransferCharacteristicofDiodeCircuitsMicroelectronicCircuit:AnalysisandDesign2.4PracticalDiodesMicroelectronicCircuit:AnalysisandDesign概述晶体二极管结构及电路符号:PN结正偏(P接+、N接-),D导通。PN正极负极晶体二极管的主要特性:单方向导电特性PN结反偏(N接+、P接-),D截止。即主要用途:用于整流、开关、检波电路中。MicroelectronicCircuit:AnalysisandDesign半导体:导电能力介于导体与绝缘体之间的物质。2.4.1半导体物理基础知识硅(Si)、锗(Ge)原子结构及简化模型:+14284+3228418+4价电子惯性核MicroelectronicCircuit:AnalysisandDesign硅和锗的单晶称为本征半导体。它们是制造半导体器件的基本材料。+4+4+4+4+4+4+4+4硅和锗共价键结构示意图:共价键2.4.2本征半导体(intrinsic)MicroelectronicCircuit:AnalysisandDesign当T升高或光线照射时产生自由电子空穴对。共价键具有很强的结合力。当T=0K(无外界影响)时,共价键中无自由移动的电子。这种现象称注意:空穴的出现是半导体区别于导体的重要特征。本征激发。本征激发MicroelectronicCircuit:AnalysisandDesign当原子中的价电子激发为自由电子时,原子中留下空位,同时原子因失去价电子而带正电。当邻近原子中的价电子不断填补这些空位时形成一种运动,该运动可等效地看作是空穴的运动。注意:空穴运动方向与价电子填补方向相反。自由电子—带负电半导体中有两种导电的载流子空穴的运动空穴—带正电(Hole)自由电子(Electron)MicroelectronicCircuit:AnalysisandDesign温度一定时:激发与复合在某一热平衡值上达到动态平衡。热平衡载流子浓度热平衡载流子浓度:本征半导体中本征激发——产生自由电子空穴对。电子和空穴相遇释放能量——复合。ikTEipeATng2230T导电能力ni或光照热敏特性光敏特性MicroelectronicCircuit:AnalysisandDesignN型半导体:2.4.3杂质半导体+4+4+5+4+4简化模型:N型半导体多子——自由电子少子——空穴自由电子本征半导体中掺入少量五价元素构成。(extrinsic)MicroelectronicCircuit:AnalysisandDesignP型半导体+4+4+3+4+4简化模型:P型半导体少子——自由电子多子——空穴空穴本征半导体中掺入少量三价元素构成。MicroelectronicCircuit:AnalysisandDesign杂质半导体中载流浓度计算N型半导体2inononpn(质量作用定理)dnodnoNpNn(电中性方程)P型半导体2ipoponnpapoapoNnNp杂质半导体呈电中性少子浓度取决于温度。多子浓度取决于掺杂浓度。MicroelectronicCircuit:AnalysisandDesign2.4.4两种导电机理——漂移和扩散载流子在电场作用下的运动运动称漂移运动,所形成的电流称漂移电流。漂移与漂移电流(driftcurrent)MicroelectronicCircuit:AnalysisandDesign载流子在浓度差作用下的运动称扩散运动,所形成的电流称扩散电流。扩散与扩散电流N型硅光照n(x)p(x)载流子浓度xnopo(Diffusioncurrent)MicroelectronicCircuit:AnalysisandDesign2.5PN结利用掺杂工艺,把P型半导体和N型半导体在原子级上紧密结合,P区与N区的交界面就形成了PN结。掺杂N型P型PN结(Junction)MicroelectronicCircuit:AnalysisandDesign2.5.1动态平衡下的PN结阻止多子扩散出现内建电场开始因浓度差产生空间电荷区引起多子扩散利于少子漂移最终达动态平衡注意:PN结处于动态平衡时,扩散电流与漂移电流相抵消,通过PN结的电流为零。PN结形成的物理过程MicroelectronicCircuit:AnalysisandDesign注意:掺杂浓度(Na、Nd)越大,内建电位差VB越大,阻挡层宽度l0越小。内建电位差:2idaTBlnnNNVV阻挡层宽度:21dadaB0)2(NNNNVql室温时锗管VB0.2~0.3V硅管VB0.5~0.7VMicroelectronicCircuit:AnalysisandDesign2.5.2PN结的伏安特性PN结——单向导电特性P+N内建电场Elo+-VPN结正偏阻挡层变薄内建电场减弱多子扩散少子漂移多子扩散形成较大的正向电流IPN结导通I电压V电流IMicroelectronicCircuit:AnalysisandDesignPN结——单向导电特性P+N内建电场Elo-+VPN结反偏阻挡层变宽内建电场增强少子漂移多子扩散少子漂移形成微小的反向电流IRPN结截止IRIR与V近似无关。温度T电流IR结论:PN结具有单方向导电特性。MicroelectronicCircuit:AnalysisandDesignPN结——伏安特性方程式PN结正、反向特性,可用理想的指数函数来描述:)1(TSVVeIIqkTVT热电压26mV(室温)其中:IS为反向饱和电流(leakagecurrent),其值与外加电压近似无关,但受温度影响很大。n,emissioncoefficient.正偏时:TSVnVIIe反偏时:SIIMicroelectronicCircuit:AnalysisandDesignCharacteristicofPracticalDiodesMicroelectronicCircuit:AnalysisandDesignPN结——伏安特性曲线ID(mA)V(V)VD(on)-ISSiGeVD(on)=0.7VIS=(10-9~10-16)A硅PN结VD(on)=0.25V锗PN结IS=(10-6~10-8)AVVD(on)时随着V正向R很小IPN结导通;VVD(on)时IR很小(IR-IS)反向R很大PN结截止。温度每升高10℃,IS约增加一倍。温度每升高1℃,VD(on)约减小2.5mV。MicroelectronicCircuit:AnalysisandDesign|V反|=V(BR)时,IR急剧,PN结反向击穿。2.6.3PN结的击穿特性雪崩击穿齐纳击穿PN结掺杂浓度较低(lo较宽)发生条件外加反向电压较大(6V)形成原因:碰撞电离。V(BR)ID(mA)V(V)形成原因:场致激发。发生条件PN结掺杂浓度较高(lo较窄)外加反向电压较小(6V)MicroelectronicCircuit:AnalysisandDesign因为T载流子运动的平均自由路程V(BR)。击穿电压的温度特性雪崩击穿电压具有正温度系数。齐纳击穿电压具有负温度系数。因为T价电子获得的能量V(BR)。稳压二极管VZID(mA)V(V)IZminIZmax+-VZ利用PN结的反向击穿特性,可制成稳压二极管。要求:IzminIzIzmaxMicroelectronicCircuit:AnalysisandDesign2.6.4PN结的电容特性势垒区内空间电荷量随外加电压变化产生的电容效应。势垒电容CTnVVCVQC)1()0(ddBTVT扩散电容CD阻挡层外(P区和N区)贮存的非平衡电荷量,随外加电压变化产生的电容效应。CT(0)CTV0)(SD

1 / 58
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功