一、有理数的基本概念复习1.负数:在正数前面加“—”的数;0既不是正数,也不是负数。判断:1)a一定是正数;2)-a一定是负数;3)-(-a)一定大于0;4)0是正整数。××××2.有理数:整数和分数统称有理数。有理数整数分数正整数负整数正分数负分数有理数正有理数零负有理数正整数正分数负整数负分数自然数或非负整数零非正数:负数和零非负数:正数和零小数和分数的关系?把下列各数分别填在表示它所在集合的圈里:0.31,-4/7,+6,-23,-8.9,0,3/5分数集合负数集合负分数集合-4/7-8.90.313/5-23填空:最小的自然数是__,最大的负整数是__,最小的正整数是__,最大的非正数是__。判断:(1)整数一定是自然数()(2)自然数一定是整数()×√0-110等于本身的数?绝对值等于本身的数相反数等于本身的数倒数等于本身的数平方等于本身的数立方等于本身的数……正数和零01,-10,10,1,-13.数轴规定了原点、正方向和单位长度的直线.1)在数轴上表示的两个数,右边的数总比左边的数大;2)正数都大于0,负数都小于0;正数大于一切负数;-3–2–1012343)所有有理数都可以用数轴上的点表示。例2:在数轴上表示下列各数,并由大到小排列)2(|21|22031解:0123-1-2-3)2(|21|42203122)2(10|21|3点评:1.把原数标上2.数轴上的数,由左到右越来越大4.相反数只有符号不同的两个数,其中一个是另一个的相反数。1)数a的相反数是-a2)0的相反数是0.-4-3–2–101234-22-443)若a、b互为相反数,则a+b=0.(a是任意一个有理数);例题分析例1:已知和的值互为相反数,求ab的值。2ab解:根据题意得:互为相反数的两数相加为0点评:2(1)b22(1)0abb5.倒数乘积是1的两个数互为倒数.1)a的倒数是(a≠0);a13)若a与b互为倒数,则ab=1.2)0没有倒数;例:下列各数,哪两个数互为倒数?8,,-1,+(-8),1,81)81(4)倒数是它本身的是______.6.绝对值一个数a的绝对值就是数轴上表示数a的点与原点的距离。1)数a的绝对值记作︱a︱;若a>0,则︱a︱=;2)若a<0,则︱a︱=;若a=0,则︱a︱=;-3–2–101234234a-a03)对任何有理数a,总有︱a︱≥0.判断:(1)|5|=|-5|(2)|-0.3|=|0.3|(3)|3|>0(4)|-1.4|>0(5)有理数的绝对值一定是正数(6)若a=b,则|a|=|b|(7)若|a|=|b|,则a=b(8)若|a|=-a,则a必为负数(9)互为相反数的两个数的绝对值相等例:在数轴上表示绝对值不少于2而又不大于5.1的所有整数;并求出绝对值少于4的所有整数的和与积0-6-5-4-3-2-1654321-54325-2-3-4绝对值少于4的所有整数的和:绝对值少于4的所有整数的积:(-3)+(-2)+(-1)+1+2+3=00(-3)×(-2)×(-1)×0×1×2×3=01)绝对值小于2的整数有________。2)绝对值等于它本身的数有___________。3)绝对值不大于3的负整数有__________。•数a和b的绝对值分别为2和5,且在数轴上表示a的点在表示b的点左侧,则b的值为.0,±1零和正数-1,-2,-35练习|7|=(),|-7|=()绝对值是7的数是()若|3-|+|4-|=_______10191........514141313121211计算7.有理数大小的比较1)可通过数轴比较:在数轴上的两个数,右边的数总比左边的数大;正数都大于0,负数都小于0;正数大于一切负数;2)两个负数,绝对值大的反而小。即:若a<0,b<0,且︱a︱>︱b︱,则a<b.8.科学记数法、近似数1.把一个绝对值大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫做科学记数法.例下列由四舍五入得到的近似数,各精确到哪一位(1)43.8(2)0.03086(3)2.4万(4)6×104(5)6.0×104解:(1)43.8精确到十分位.(2)0.03086精确到十万分位,(3)2.4万精确到千位,(4)6×104精确到万位,(5)6.0×104精确到千位,有理数的五种运算1.运算法则2.运算顺序3.运算律1.运算法则1)有理数加法法则2)有理数减法法则3)有理数乘法法则4)有理数除法法则5)有理数的乘方1)有理数加法法则①同号两数相加,取相同的符号,并把绝对值相加;②异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得0;③一个数同0相加,仍得这个数。有理数加法法则应用举例:①同号相加:②异号相加③与0相加若a、b互为相反数,则a+b=a是任一个有理数,则a+0=0a(-5)+(-3)=-8(+5)+(+3)=85+(-3)=2-5+(+3)=-22)有理数减法法则减去一个数,等于加上这个数的相反数.即a-b=a+(-b)例:分别求出数轴上两点间的距离:①表示2的点与表示-7的点;②表示-3的点与表示-1的点。解:①2-(-7)=2+7=9(或︱-7-2︱=︱-9︱=9)②-1-(-3)=-1+3=23)有理数的乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0.①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个数相乘,有一个因数为0,积就为0.①同号相乘②异号相乘③数与0相乘a为任何有理数,则a×0=0有理数乘法法则应用举例:2×3=6(-2)×3=-6(-2)×(-3)=62×(-3)=-6④连乘(-2)×(-3)×(-4)=-24(-2)×3×(-4)=244)有理数除法法则①除以一个数等于乘上这个数的倒数;即b1a÷b=a×(b≠0)②两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.21151199311114325)有理数的乘方①求n个相同因数的积的运算,叫做乘方。an幂指数底数即a·a·a·····a=n个an规律:(1)正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。(2)1的任何次幂都是1,–1的奇次幂是–1,–1的偶次幂是1。(3)互为相反数的两个数,它们的偶次幂相等,奇次幂互为相反数。-3的平方是()平方是9的数是()9±39±3•(1)2×32和(2×3)2有什么区别?各等于什么?•(2)32和23有什么区别?各等于什么?(3)-34和(-3)4有什么区别?各等于什么?口答练习1)在中,12是数,10是数,读作;2)的底数是,指数是,读作;7231012237的7次方23底指12的10次方12的10次幂2.运算顺序1)有括号,先算括号里面的;2)先算乘方,再算乘除,最后算加减;3)对只含乘除,或只含加减的运算,应从左往右运算。3.有理数的运算律1)加法交换律a+b=b+a2)加法结合律(a+b)+c=a+(b+c)3)乘法交换律ab=ba4)乘法结合律(ab)c=a(bc)5)分配律a(b+c)=ab+ac解题技能加法四结合1.凑整结合法2.同号结合法3.两个相反数结合法4.同分母或易通分的分数结合法A、5.6+(-0.9)+4.4+(-8.1)+(-1)2111B46323234、C、(+7)-(-15)+(-12)-(+7)D、1-4+7-10+13-16+19-22解题技能乘法三结合1、积为整数结合2、两个倒数结合3、能约分的结合A40.0725、114B50457、532C31775、352241863111124468120.324.580.684.585354121771771756324432分配律分配律反着用23918241824919分配律计算技巧116503253335真假分配律12.近似数5.20×104精确到____位。1分钟13.将0.0245精确到千分位______将24500精确到万位______1分钟专题训练1充分利用概念互为相反数的两个数的和为0,互为倒数的积为1.绝对值是正数的有两个,且它们互为相反数例:已知a、b互为相反数,c,d互为倒数,m是绝对值最小的数,求代数式2007)()(cdmbma非负数性质的应用3322a|2-b|1)-a2a,0|4|b)a122bbb互为相反数,求与、若(的值求、已知:(数形结合的思想方法已知︱a︱︱b︱,且a0,b0,试比较a,b,-a,-b的大小分类讨论的思想比较1+a与1-a的大小。练习1、已知有理数a、b、c在数轴上的位置如图,化简|a|-|a+b|+|c-a|+|b+c||ba0c的值求、已知32)(b)-(a4,|b-a|2ab1、若a0,b0,且|a||b|,则a+b___0特殊值法2、若x0,y0,且|x||y|,则x+y__03、是有理数,试探究的值是多少?ccbbaacba,,计算练习:23216232312633323222212132424332211210.6245挑战自我100991431321211)1(101991751531311)2(949111071741411)3(拆项、合并法在计算中的应用421301201...1216121)1(200820051...741411练习例、计算