12.2三角形全等的判定复习课教学设计经典好题归纳举例教学目标:1、复习巩固三角形全等的判定定理2、通过练习使学生熟练掌握三角形全等的判定证明教学重点:三角形全等的判定定理教学难点:三角形全等的判定定理熟练运用知识提要1、判断全等三角形的方法有:①__________;②___________;③___________;④__________;⑤___________。2、全等三角形有哪些性质:①___________________;②________________.二、讲练结合1、如图,AC=BD,AB=DC,求证:∠B=∠C.变式练习:如图AB=AC,BD=CD,求证:∠B=∠C.2、如图,AB=AD,CD=CB,∠A+∠C=180°,试探索CB与AB的位置关系.ECBDADACBDCBA变式练习1:如图,AC=AB,BD=CD,AD与BC相交于O,求证:AD⊥BC.变式练习2:在△ABC中,分别以AB、AC为边在△ABC的外面作正△ABE和正△ACF,求证:BF=CE.3、如图,CE⊥AB于E,BD⊥AC于D,BD、CE交于点O,且OD=OE,求证:AB=AC.变式练习:如图,AB=AE,∠B=∠E,∠BAC=∠EAD,∠CAF=∠DAF,求证:AF⊥CD.4、已知AB是等腰直角三角形ABC的斜边,AD是∠BAC的角平分线,求证:AC+CD=AB.ODCBAFEDCBAFECBADCBAEODCBA变式练习:已知E是AD上的一点,AB=AC,AE=BD,CE=BD+DE,求证:∠B=∠CAD.5、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,如图,且AD⊥MN于D,BE⊥MN于E,求证:DE=AD-BE.变式练习:在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,如图,且AD⊥MN于D,BE⊥MN于E,求证:DE=AD+BE.6、如图,AD是△ABC的高,∠B=2∠C,求证:CD=AB+BD.NMEDCBANMEDCBAACBDECBDA7、在△ABC中,AB=AC,在AB上取一点D,在AC的延长线上取一点E,使BD=CE,连结DE交BC于F,求证:DF=EF.变式练习:在△ABC中,AB=AC,在AB上取一点D,在AC的延长线上取一点E,连结DE交BC于F,若DF=EF,求证:BD=CE.8、如图,OA=OB,C、D分别是OA,OB上的两点,且OC=OD,连结AD、BC交于E,求证:OE平分∠AOB.变式练习:如图,AB=AC,D是∠BAC的角平分线上的一点,连结CD并延长交AB于E,连结BD并延长交AC于F,求证:AE=AF.FEDCBAFEDCBAEDCBAOFEDCAB