年级导学案第课时主备人:审核人:审批人:课题:第1课时探索勾股定理(1)教师个性化设计、学法指导或学生笔记学习目标:1.用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.2.让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.3.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.4.在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习.学习重点:让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.学习难点:发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.一、自主预习:预习内容:教材P1-7预习检测:1、三角形按角的大小可分为:、、。2、三角形的三边关系:三角形的任意两边之和;任意两边之差。3、直角三角形的两个锐角;4、在RtΔABC中,两条直角边长分别为a、b,则这个直角三角形的面积可以表示为:。二、合作探究:内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)1.探究活动一内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:年级导学案第课时主备人:审核人:审批人:问:你能发现各图中三个正方形的面积之间有何关系吗?学生通过观察,归纳发现:2.探究活动二内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?(1)观察下面两幅图:(2)填表:A的面积(单位面积)B的面积(单位面积)C的面积(单位面积)左图右图(3)你是怎样得到正方形C的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)图1图2图3学生的方法可能有:ABCCBA年级导学案第课时主备人:审核人:审批人:方法一:如图1,将正方形C分割为四个全等的直角三角形和一个小正方形,13132214CS.方法二:如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积,133221452CS.方法三:如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法,13542CS.(4)分析填表的数据,你发现了什么?学生通过分析数据,归纳出:3.议一议内容:(1)你能用直角三角形的边长a,b,c来表示上图中正方形的面积吗?(2)你能发现直角三角形三边长度之间存在什么关系吗?(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?内容:例题如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下,树顶落在离树根24m处.大树在折断之前高多少?练习:1.基础巩固练习:求下列图形中未知正方形的面积或未知边的长度(口答):?225100x1517年级导学案第课时主备人:审核人:审批人:2.生活中的应用:小明妈妈买了一部29in(74cm)的电视机.小明量了电视机的屏幕后,发现屏幕只有58cm长和46cm宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?三、当堂检测:1、求下图中字母所代表的正方形的面积如图示:A代表的正方形面积为它的边长为B代表的正方形面积为它的边长为64225AB169144ABC蚂蚁沿图中所示的折线由A点爬到B点,蚂蚁一共爬行了多少厘米?(图中小方格的边长代表1厘米)1、2、2、求出下列各图中x的值。3.如图所示,强大的台风使得一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处。旗杆折断之前有多高?4.师生互动:例题.在△ABC中,AB=AC=5cm,BC=6cm,求△ABC的面积。四、总结反思:五、课后练习:课后反思:x1517CBA