图1图6《相似》章节达标检测试题一、选择题(每题四个选项中有一个正确答案,请将正确答案的序号填在题后的括号内。每小题4分,共40分)1、用放大镜将图形放大,应属于哪一种变换()A、对称变换B、平移变换C、旋转变换D、相似变换.2、已知:如图1,DE∥BC,AD:DB=1:2,则下列结论不正确的是()A、12DEBCB、19ADEABC的面积的面积C、13ADEABC的周长的周长D、18ADE的面积四边形BCED的面积3、如图2,点P是ABC的边AC上一点,连结BP,以下条件中,不能判定ABP∽ACB的是()A.ABACAPABB.ABACBPBCC.CABPD.ABCAPB4、如图3,为了测量一池塘的宽DE,在岸边找一点C,测得CD=30m,在DC的延长线上找一点A,测得AC=5m,过点A作AB∥DE,交EC的延长线于B,测得AB=6m,则池塘的宽DE为()A、25mB、30mC、36mD、40m5、下列说法正确的是()A、任意两个等腰三角形都相似B、任意两个菱形都相似C、任意两个正五边形都相似D、对应角相等的两个多边形相似6、如图4,已知ABCDEF∥∥,那么下列结论正确的是()A.ADBCDFCEB.BCDFCEADC.CDBCEFBED.CDADEFAF7、美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图5,某女士身高165cm,下半身长x与身高1的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为()A.4cmB.6cmC.8cmD.10cm8、在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图6所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为()A.9.5B.10.5C.11D.15.5图2图3图4图5D.C.B.A.ABPD图8CC9、下列四个三角形,与左图中的三角形相似的是()10、如图7,在平行四边形ABCD中,E为CD上一点,:2:3DECE,连结,,AEBEBD且,AEBD交于点F,则S△DEF:S△ADF:S△ABF等于()A.4:10:25B.4:9:25C.2:3:5D.2:5:25二、填空题(请将结果填在相应的横线上.每小题5分,共20分)11、东东和爸爸到广场散步,爸爸的身高是176cm,东东的身高是156cm,在同一时刻爸爸的影长是88cm,那么东东的影长是cm.12、如图8是小明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是_____________13、△ABC三个顶点坐标分别为A(2,-2),B(4,-5),C(5,-2),以原点O为位似中心,将这个三角形放大为原来的2倍.相应坐标是__________________________________________14、如图9,等边ABC△的边长为3,P为BC上一点,且1BP,D为AC上一点,若60APD°,则CD的长为____________三、解答题(共计90分)15、(本题8分)如图10,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.16、(本题8分)如图11,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.求△ABC的面积.FEDCBA图7ADCPB图960°图10图1117、(本题8分)如图12,在△ABC中,AB=AC,∠1=∠2.⑴△ADB和△ABE相似吗?⑵小明说:“AEADAB2”,你同意吗?18、(本题8分)如图13,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;(2)相似比为2,在网格内将△ABC放大,画出放大后的图形△A′B′C′;(3)计算△A′B′C′的面积S.20、(本题10分)小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点AEC、、在同一直线上).已知小明的身高EF是1.7m,请你帮小明求出楼高AB(结果精确到0.1m).图12ABC图13ABCDFE图1521、(本题12分)如图16,在矩形ABCD中,点E、F分别在边AD、DC上,△ABE∽△DEF,AB=6,AE=9,DE=2,求EF的长..22、(本题12分)如图17所示,在平面直角坐标系xOy内已知点A和点B的坐标分别为(0,6),(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P,Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△ABO相似?(3)当t为何值时,△APQ的面积为524个平方单位?图17图1623、(本题14分)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求x的值.,求x的值.图18