2.哥尼斯堡七桥问题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

哥尼斯堡七桥问题哥尼斯堡七桥问题现今的加里宁格勒,旧称哥尼斯堡,是一座历史名城。在十八、十九世纪,那里是东普鲁士的首府,曾经诞生和培育过许多伟大的人物。著名的哲学家,古典唯心主义的创始人康德,终生没有离开过哥尼斯堡一步!二十世纪最伟大的数学家之一,德国的希尔伯特也出生于此地。哥城景致迷人,碧波荡漾的普累格河,横贯其境。在河的中心有一座美丽的小岛。普河的两条支流,环绕其旁汇成大河,把全城分为下图所示的四个区域:岛区(A),东区(B),南区(C)和北区(D)。著名的哥尼斯堡大学,傍倚于两条支流的河旁,使这一秀色怡人的区域,又增添了几分庄重的韵味!有七座桥横跨普累格河及其支流,其中五座把河岸和河心岛连接起来。这一别致的桥群,古往今来,吸引了众多的游人来此散步。早在十八世纪以前,当地的居民便热衷于以下有趣的问题:能不能设计一次散步,使得七座桥中的每一座都走过一次,而且只走过一次?这便是著名的哥尼斯堡七桥问题。这个问题后来变得有点惊心动魄:说是有一队工兵,因战略上的需要,奉命要炸掉这七座桥。命令要求当载着炸药的卡车驶过某座桥时,就得炸毁这座桥,不许遗漏一座!如果有兴趣,完全可以照样子画一张地图,亲自尝试尝试。不过,要告诉大家的是,想把所有的可能线路都试过一遍是极为困难的!因为各种可能的线路有=5040种。要想一一试过,真是谈何容易。正因为如此,七桥问题的解答便众说纷纭:有人在屡遭失败之后,倾向于否定满足条件的解答的存在;另一些人则认为,巧妙的答案是存在的,只是人们尚未发现而已,这在人类智慧所未及的领域,是很常见的事!27P77P科技馆里的模型问题的魔力,竟然吸引了天才的欧拉(Euler。1707---1783)。这位年轻的瑞士数学家,以其独具的慧眼,看出了这个似乎是趣味几何问题的潜在意义。公元1736年,29岁的欧拉向圣彼得堡科学院递交了一份题为《哥尼斯堡的七座桥》的论文。论文的开头是这样写的:“讨论长短大小的几何学分支,一直被人们热心地研究着。但是还有一个至今几乎完全没有探索过的分支。莱布尼兹最先提起过它,称之:“位置的几何学”。这个几何学分支讨论只与位置有关的关系,研究位置的性质;它不去考虑长短大小,也不牵涉到量的计算。但是至今未有过令人满意的定义,来刻划这门位置几何学的课题和方法……”接着,欧拉运用他那娴熟的变换技巧,如同下图,把哥尼斯堡七桥问题变为读者所熟悉的,简单的几何图形的“一笔画”问题:即能否笔不离纸,一笔画但又不重复地画完以下的图形?不难发现:右图中的点A、B、C、D,相当于七桥问题中的四块区域;而图中的弧线,则相当于连接各区域的桥。想不到轰动一时的哥尼斯堡七桥问题,竟然与孩子们的游戏,想用一笔画画出“串”字和“田”字这类问题一样。聪明的欧拉,正是在此基础上,经过悉心研究,确立了著名的“一笔画原理”,从而成功地解决了哥尼斯堡七桥问题。一笔画原理:一个图如果可以一笔画成,那么这个图中奇数顶点的个数不是0就是2。下图画的两只动物世界的庞然大物,都可以用一笔画完成。它们的奇点个数分别为0和2。这两张图选自《智力世界》一刊,也算一种别有风趣的例子。需要顺便提到的是:既然可由一笔画画成的脉络,其奇点个数应不多于两个,那么,两笔划或多笔划能够画成的脉络,其奇点个数应有怎样的限制呢?我想,聪明的读者完全能自行回答这个问题。一般地,我们有:含有2n(n0)个奇点的脉络,需要n笔划画成。问题在哥尼斯堡七桥问题中再加进去一座桥,会怎么样?橡皮膜上的几何学在《哥尼斯堡七桥》问题中,读者已经看到了一种只研究图形各部分位置的相对次序,而不考虑它们尺寸大小的新几何学。莱布尼兹(Leibniz,1646~1716)和欧拉为这种“位置几何学”的发展奠定了基础。如今这一新的几何学,已经发展成一门重要的数学分支——拓扑学拓扑学研究的课题是极为有趣的。在拓扑学中人们感兴趣的只是图形的位置而不是它的大小。有人把拓扑学说成是橡皮膜上的几何学是很恰当的。因为橡皮膜上的图形,随着橡皮膜的拉动,其长度、曲直、面积等等都将发生变化。此时谈论“有多长?”、“有多大?”之类的问题,是毫无意义的!不过,在橡皮膜几何里也有一些图形的性质保持不变。例如点变化后仍然是点;线变化后依旧为线;相交的图形绝不因橡皮的拉伸和弯曲而变得不相交!拓扑学正是研究诸如此类,使图形在橡皮膜上保持不变性质的几何学请大家思考:“串”、“田”两字,在橡皮膜上是否可变为下边的图形?能否一笔画出?拓扑学是在19世纪末兴起并在20世纪蓬勃发展的数学分支,与近世代数、近代分析共同成为数学的三大支柱。拓扑学已在物理、化学、生物一些工程技术中得到越来越广泛的应用。拓扑学主要研究几何图形在一对一的双方连续变换下不同的性质,这种性质称为“拓扑性质”。以下我们将复杂的拓扑学知识应用到简单的游戏中,使大家在游戏中了解拓扑学的特性,并学习到相关知识。“内部”与“外部”一条头尾相连且自身不相交的封闭曲线,把橡皮膜分成两个部分。如果我们把其中有限的部分称为闭曲线的“内部”,那么另一部分便是闭曲线的“外部”。从闭曲线的内部走到闭曲线的外部,不可能不通过该闭曲线。因此,无论你怎样拉扯橡皮膜,只要不切割、不撕裂、不折叠、不穿孔,那么闭曲线的内部和外部总是保持不变的!“内部”与“外部”是拓扑学中很重要的一组概念以下有趣的故事,将增加你对这两个概念的理解:传说古波斯穆罕默德的继承人哈里发,有一位才貌双全的女儿。姑娘的智慧和美貌,使许多聪明英俊的小伙子为之倾倒,致使求婚者的车马络绎不绝。哈里发决定从中挑选一位才智超群的青年为婿。于是便出了一道题目,声明说:谁能解出这道题,便将女儿嫁给谁!哈里发的题目是这样的:请用线把下图中写有相同数字的小圆圈连接起来,但所连的线不许相交,也不许与图中的线相交上述问题的解决,似乎不费吹灰之力。但实际上求婚者们全都乘兴而来,败兴而去!据说后来哈里发终于醒悟,发现自己所提的问题是不可能实现的,因而后来又改换了题目。也有的说,哈里发固执已见,美丽的公主因此终生未嫁。事情究竟如何,现在自然无从查考。332211哈里发的失算,却是可以用拓扑学的知识加以证明的。其所需之概念,只有“内部”与“外部”两个。事实上,我们很容易用线把①一①、②一②连起来。明眼的读者可能已经发现:我们得到了一条简单的闭曲线,这条曲线把整个平面分为内部(阴影部分)和外部两个区域。其中一个③在内部区域,而另一个③却在外部区域,要想从闭曲线内部的③,画一条弧线与外部的③相连,而与已画的闭曲线不相交,这是不可能的!这正是哈里发悲剧之所在。点A是在内部还是外部问题:沿中间将莫比乌斯带剪开会出现什么情况?问题:再次沿中间剪开会出现什么情况?不分内外的“克莱因瓶”拓扑魔术奇观科技馆中的拓扑游戏道具谢谢观看!2020

1 / 64
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功