江苏省通州高级中学张春明数与形,本是相倚依焉能分作两边飞数无形时少直觉形少数时难入微数形结合百般好隔离分家万事休切莫忘,几何代数统一体永远联系莫分离——华罗庚020303040405050613.518.3赛季得分22.317.58.290203030404050506赛季篮板10.28.4赛季02-0303-0404-0505-06得分13.517.518.322.3篮板8.298.410.2姚明数据统计表()yfx()ygxxyOxyOababnm能用图象上动点P(x,y)的横、纵坐标关系来说明上升或下降趋势吗?xyo1yxxyo1yxxyo2yx在某一区间内,当x的值增大时,函数值y也增大——图像在该区间内逐渐上升;当x的值增大时,函数值y反而减小——图像在该区间内逐渐下降。函数的这种性质称为函数的单调性局部上升或下降下降上升y246810O-2x84121620246210141822I对区间I内x1,x2,当x1x2时,有f(x1)f(x2)图象在区间I逐渐上升?OxIy区间I内随着x的增大,y也增大x1x2f(x1)f(x2)MN对区间I内x1,x2,当x1x2时,有f(x1)f(x2)xx1x2?Iyf(x1)f(x2)OMN任意区间I内随着x的增大,y也增大图象在区间I逐渐上升对区间I内x1,x2,当x1x2时,有f(x1)f(x2)xx1x2都yf(x1)f(x2)O设函数y=f(x)的定义域为A,区间IA.如果对于区间I上的任意当x1x2时,都有f(x1)f(x2),定义MN任意两个自变量的值x1,x2,I称为f(x)的单调增区间.那么就说f(x)在区间I上是单调增函数,区间I内随着x的增大,y也增大图象在区间I逐渐上升I那么就说在f(x)这个区间上是单调减函数,I称为f(x)的单调减区间.Oxyx1x2f(x1)f(x2)类比单调增函数的研究方法定义单调减函数.xOyx1x2f(x1)f(x2)设函数y=f(x)的定义域为A,区间IA.如果对于属于定义域A内某个区间I上的任意两个自变量的值x1,x2,设函数y=f(x)的定义域为A,区间IA.如果对于属于定义域A内某个区间I上的任意两个自变量的值x1,x2,那么就说在f(x)这个区间上是单调增函数,I称为f(x)的单调区间.增当x1x2时,都有f(x1)f(x2),当x1x2时,都有f(x1)f(x2),单调区间(2)函数单调性是针对某个区间而言的,是一个局部性质;(1)如果函数y=f(x)在区间I是单调增函数或单调减函数,那么就说函数y=f(x)在区间I上具有单调性。在单调区间上,增函数的图象是上升的,减函数的图象是下降的。判断1:函数f(x)=x2在是单调增函数;,xyo2yx(2)函数单调性是针对某个区间而言的,是一个局部性质;(1)如果函数y=f(x)在区间I是单调增函数或单调减函数,那么就说函数y=f(x)在区间I上具有单调性。在单调区间上,增函数的图象是上升的,减函数的图象是下降的。判断2:定义在R上的函数f(x)满足f(2)f(1),则函数f(x)在R上是增函数;(3)x1,x2取值的任意性yxO12f(1)f(2)例1、下图为函数,的图像,指出它的单调区间。[4,7]xy=fx123-2-3-2-11234567xo-4-1y-1.5[-1.5,3],[5,6][-4,-1.5],[3,5],[6,7]解:单调增区间为单调减区间为例2.画出下列函数图像,并写出单调区间:1(1)(0);yxxx1yxy1yx的单调减区间是_____________(,0)(0,),讨论1:根据函数单调性的定义,1(0)(,0)(0,)yxx能不能说在定义域上是单调减函数?2试讨论在和上的单调性?()(0)kfxkx0,,0?变式2:讨论的单调性2(0)yaxbxca成果交流变式1:讨论的单调性2(0)yaxa2(2)2.yxxyy=-x2+21-1122-1-2-22yx+2的单调增区间是_______;(,0]2yx+2的单调减区间是_______.[0,)例2.画出下列函数图像,并写出单调区间:例3.判断函数在定义域上的单调性.(教材P43/7(4))1yxx0,描点作图1.任取x1,x2∈D,且x1x2;2.作差f(x1)-f(x2);3.变形(通常是因式分解和配方);4.定号(即判断差f(x1)-f(x2)的正负);5.下结论主要步骤并给出证明试用定义法证明函数在区间上是单调增函数。11)(xxf0,小结1.函数单调性的定义中有哪些关键点?2.判断函数单调性有哪些常用方法?3.你学会了哪些数学思想方法?作业2、证明函数f(x)=-x2在上是减函数。,03、证明函数f(x)=在上是单调递增的。(选做)0,11xx1、教材p37/5,6,7数与形,本是相倚依,焉能分作两边飞;数无形时少直觉,形少数时难入微;数形结合百般好,隔离分家万事休;切莫忘,几何代数统一体,永远联系莫分离.——华罗庚单调增区间单调减区间a0a02yaxbxc,2ba,2ba2(0)yaxbxca的对称轴为2bxa返回,2ba,2ba证明:在区间上任取两个值且1,12,xx12xx则12121211()()()()fxfxxxxx121211()()xxxx211212()()xxxxxx1212121()()xxxxxx12,1,xx,且12xx12120,10xxxx1212()()0,()()fxfxfxfx所以函数在区间上是增函数.1yxx1,取值作差变形定号结论返回返回()fx是定义在R上的单调函数,且的图象过点A(0,2)和B(3,0)(1)解方程(2)解不等式(3)求适合的的取值范围()fx()(1)fxfx(2)(1)fxfx()2()0fxfx或x成果运用,12()4fxxax若二次函数的单调增区间是,则a的取值情况是()变式1变式2请你说出一个单调减区间是的二次函数,1变式3请你说出一个在上单调递减的函数,1,12()4fxxax若二次函数在区间上单调递增,求a的取值范围。2222aaaaA.B.C.D.()21Ayx2()31Byx2()Cyx2()21Dyxx1010xxxx________成果运用,12()4fxxax若二次函数在区间上单调递增,求a的取值范围。解:二次函数的对称轴为,由图象可知只要,即即可.2()4fxxax2ax12ax2aoxy1xy1o