2018-2019学年度第一学期期中检测九年级数学试题(全卷共120分,考试时间90分钟)温馨提示:请把答案全部填涂在答题纸上,否则不给分.一、选择题(本题共8题,每题3分,共24分.在每题给出的四个选项中,有且只有一项是正确的,请将正确选项前的字母填写在答题卡上)1.一元二次方程x2-9=0的根为A.x=3B.x=-3C.x1=3,x2=-3D.x=92.如图,点A、B、C是⊙O上的三点,若∠BOC=80º,则∠A的度数是A.40ºB.60ºC.80ºD.100º3.用配方法解方程x2-4x-1=0时,配方后得到的方程为A.(x+2)2=3B.(x+2)2=5C.(x-2)2=3D.(x-2)2=54.下列关于x的一元二次方程有实数根的是A.x2+1=0B.x2+x+1=0C.x2-x+1=0D.x2-x-1=05.在下列命题中,正确的是A.长度相等的弧是等弧B.直径所对的圆周角是直角C.三点确定一个圆D.三角形的外心到三角形各边的距离相等6.对于二次函数y=-(x+1)2-3,下列结论正确的是A.函数图像的顶点坐标是(-1,-3)B.当x-1时,y随x的增大而增大C.当x=-1时,y有最小值为-3D.图像的对称轴是直线x=17.如图,圆弧形桥拱的跨度AB=16m,拱高CD=4m,则圆弧形桥拱所在圆的半径为A.6mB.8mC.10mD.12m8.如图是二次函数y=ax2+bx+c图像的一部分,其对称轴为直线x=-1,且过点(-3,0),下列说法:①abc0;②2a-b=0;③4a+2b+c0;④若(-5,y1),(2.5,y2)BOCA(第2题)yx-3O-1(第7题)(第8题)ABDC是抛物线上两点,则y1y2,其中说法正确的是()A.①②③B.②③C.①②④D.①②③④二、填空题(每小题3分,共30分)9.方程x2=x的解是_______________.10.已知扇形的圆心角为120º,半径为6cm,则该扇形的弧长为_______cm(结果保留π).11.一元二次方程2x2+4x-1=0的两根为x1、x2,则x1+x2的值是_________.12.圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的侧面积是_________cm2.13.抛物线y=x2沿x轴向右平移1个单位长度,则平移后抛物线对应的表达式是________.14.一种药品经过两次降价,药价从每盒60元下调至48.6元,设平均每次降价的百分率为x,根据题意,可列方程是:_________________.15.若关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m=______.16.如图,PA、PB是⊙O的两条切线,A,B是切点,若∠APB=60°,PO=2,则PB=_________.17.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为_____.18.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:x…-2-1012…y…1771-11…则当y7时,x的取值范围是______________.三、解答题(共66分)19.解方程(每题5分,共10分)(1)x2+4x-2=0;(2)(x-1)(x+2)=2(x+2)(第16题)(第17题)CDBAOBPAO20.(6分)如图,已知AB是⊙O的直径,弦CD⊥AB于E,CD=16,AB=20,求BE的长.21.(8分)如图,已知二次函数y=ax2+bx+c的图像经过A(-1,2)、B(0,-1)、C(1,-2).(1)求二次函数的表达式;(2)画出二次函数的图像.22.(8分)如图,学校准备修建一个面积为48m2的矩形花园.它的一边靠墙,其余三边利用长20m的围栏.已知墙长9m,问围成矩形的长和宽各是多少?23.(10分)如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.EABDOC(第20题)xyACBO(第21题)(第22题)①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积(结果保留根号和π).24.(12分)某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度)与电价x(元/千度)的函数图像如图:(1)当电价为600元/千度时,工厂消耗每千度电产生利润是多少?(2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=5m+600,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?(第23题)EODACB(第24题)xy(元/千度)(元/千度)500300200O25.(12分)在平面直角坐标系中,抛物线y=-x2-2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.(图1)(图2)(第25题)yxDCAOByxDCAOB2018-2019学年度第一学期期中检测九年级数学试题参考答案及评分标准一、选择题(每题3分,共24分)二、选择题(每题3分,共30分)9.x1=0,x2=1;10.4π;11.-2;12.15π;13.y=(x-1)2;14.60(1-x)2=48.6;15.1;16.3;17.41π;18.-1x3.三、解答题(共66分)19.解法一:(1)x2+4x+4-4-2=0···························1分(x+2)2=6·····································2分x+2=6·····································3分x1=-26,x2=-26······························5分解法二:a=1,b=4,c=-2·····························1分△=42-4·1·(-2)=24······························2分x=2244····································3分x1=62,x2=62·······························5分(2)解:(x-1)(x+2)-2(x+2)=0··························1分(x+2)(x-3)=0·································2分x+2=0,x-3=0·································3分x1=-2,x2=3··································5分20.解:连接OC,∵AB是⊙O的直径,CD⊥AB,∴CE=21CD=8···············2分∵AB=20,∴OB=OC=10······························4分∵∠OEC=90°,∴22810OE=6·························5分又∵BE=OB-OE,∴BE=10-6=4··························6分21.解:(1)∵二次函数y=ax2+bx+c的图像经过A(-1,2)、B(0,-1)、C(1,-2).∴212cbaccba··································3分题号12345678答案CADDBACC解得121cba····································4分∴二次函数的表达式为y=x2-2x-1·························5分(2)图像如图:·······························8分22.解:设宽为xm,则长为(20-2x)m.························1分由题意,得x·(20﹣2x)=48,···························3分解得x1=4,x2=6.································5分当x=4时,20-2×4=12>9(舍去),·······················6分当x=6时,20-2×6=8.······························7分答:围成矩形的长为8m、宽为6m.·························8分23.解:(1)连结OD,∵OA=OD,∴∠OAD=∠ODA.····················1分∵∠BAC的角平分线AD交BC边于D,∴∠CAD=∠OAD.·················2分∴∠CAD=∠ODA,∴OD∥AC,····························3分∴∠ODB=∠C=90°,即OD⊥BC.···························4分又∵直线BC过半径OD的外端,∴直线BC与⊙O相切.··················5分(2)①设OA=OD=r,在Rt△BDO中,∠B=30°,∴OB=2r.············6分在Rt△ACB中,∠B=30°,∴AB=2AC=6.······················7分∴3r=6,解得r=2.·······························8分②在Rt△ACB中,∠B=30°,∴∠BOD=60°.∴322360602ODES扇形.·······9分∴所求图形面积为3232ODEBODSS扇形.······················10分24.解:(1)设工厂每千度电产生利润y(元/千度)与电价x(元/千度)的函数表达式为:y=kx+b1分∵该函数图象过点(0,300),(500,200),∴200500300bkb···············3分解得3002.0bk···································4分所以y=-0.2x+300(x≥0)····························5分当电价x=600元/千度时,该工厂消耗每千度电产生利润y=-0.2×600+300=180(元/千度)6分CyxAOB(2)设工厂每天消耗电产生利润为w元,由题意得:w=my=m(-0.2x+300).······7分=m[-0.2(5m+600)+300]=-m2+180m=-(m-90)2+8100.················9分在m≤90时,w随m的增大而最大,由题意,m≤60.················10分∴当m=60时,w最大=-(60-90)2+8100=7200.····················11分即当工厂每天消耗60千度电时,工厂每天消耗电产生利润为最大,最大利润为7200元.··12分25.解:(1)当y=-x2-2x+3中y=0时,有-x2-2x+3=0,解得:x1=-3,x2=1.∵A在B的左侧,∴A(-3,0),B(1,0).·······················1分当y=-x2-2x+3中x=0时,则y=3,∴C(0,3).················2分∵y=-x2-2x+3=-(x+1)2+4,∴顶点D(-1,4).·············