第1页共7页北师大版八年级上册数学4.3一次函数的图像同步测试卷一.选择题1.下列各点在直线y=2x+6上的是()A.(﹣5,4)B.(﹣7,20)C.(,)D.(,1)2.若一次函数y=kx+b的图象经过第一、二、四象限,则一次函数y=bx+k的图象大致是()A.B.C.D.3.点P(2,m)是正比例函数y=2x图象上的一点,则点P到原点的距离为()A.2B.C.4D.4.把直线l1:y=3x﹣2向右平移2个单位可以得到直线l2,要得到直线l2,也可以把直线l1()A.向上平移2个单位B.向下平移2个单位C.向上平移6个单位D.向下平移6个单位5.已知一次函数y=(a+3)x+b+1的图象经过过一、二、四象限,那么a,b的取值范围是()A.a>﹣3,b>﹣1B.a<﹣3,b<﹣1C.a>﹣3,b<﹣1D.a<﹣3,b>﹣16.一次函数y=﹣x﹣1的图象不经过第()象限.A.四B.三C.二D.一7.函数y=|x﹣1|的图象是()第2页共7页A.B.C.D.8.在平面直角坐标系xOy中,直线y=﹣2x+4与坐标轴所围成的三角形的面积等于()A.2B.4C.6D.89.一次函数y=kx+3经过点(1,0),那么这个一次函数()A.y随x的增大而增大B.y随x的增大而减小C.图象经过原点D.图象不经过第二象限10.已知点(﹣3,y1)、(﹣1,3)、(2,y2)在一次函数y=kx+5的图象上,则y1,y2,3的大小关系正确()A.3<y2<y1B.y1<3<y2C.y2<y1<3D.y2<3<y1二.填空题11.已知直线y=2x﹣2,则直线与y轴的交点坐标为.12.若将正比例函数y=2x的图象向上平移3个单位,得直线y=kx+b,则k+b的值为.13.当x=时,函数y=2x﹣3与函数y=﹣3x+5有相同的函数值.14.已知点(﹣6,m),(8,n)都在直线y=﹣x﹣b上,则mn.(填大小关系)15.若一次函数y=(k﹣2)x+3﹣k的图象经过第一,二,三象限,则k的取值范围是;若一次函数y=(k﹣2)x+3﹣k的图象不经过第四象限,则k的取值范围是.三.解答题16.已知直线l:y=kx+3k(k≠0)经过点A(1,4).(1)求k的值;(2)点(﹣1,a)在这条直线l上,求a的值.17.已知:如图,直线y=x+3与x轴,y轴分别交于点A和点B.第3页共7页(1)点A坐标是,点B的坐标是;(2)△AOB的面积=;(3)当y>0时,x的取值范围是.第4页共7页参考答案1.解:A、当x=﹣5时,y=2×(﹣5)+6=﹣4,∴点(﹣5,4)不在直线y=2x+6上;B、当x=﹣7时,y=2×(﹣7)+6=﹣8,∴点(﹣7,20)不在直线y=2x+6上;C、当x=时,y=2×+6=,∴点(,)在直线y=2x+6上;D、当x=﹣时,y=2×(﹣)+6=﹣1,∴点(﹣,1)不在直线y=2x+6上.故选:C.2.解:一次函数y=kx+b过一、二、四象限,则函数值y随x的增大而减小,因而k<0;图象与y轴的正半轴相交则b>0,因而一次函数y=bx﹣k的一次项系数b>0,y随x的增大而增大,经过一三象限,常数项k<0,则函数与y轴负半轴相交,因而一定经过一三四象限,故选:D.3.解:当x=2时,y=2×2=4,∴m=4,∴点P的坐标为(2,4),∴OP==2.故选:D.4.解:把直线l1:y=3x﹣2向右平移2个单位可以得到直线l2,则直线l2的解析式是:y=3(x﹣2)﹣2=3x﹣8.把直线l1:y=3x﹣2向下平移6个单位也可以得到直线l2:y=3x﹣2﹣6=3x﹣8.故选:D.5.解:一次函数y=(a+3)x+b+1的图象经过过一、二、四象限,第5页共7页故a+3<0,b+1>0,∴a<﹣3,b>﹣1,故选:D.6.解:∵一次函数y=﹣x﹣1中的k=﹣1<0,∴该函数图象经过第二、四象限.又∵b=﹣1<0,∴该函数图象与y轴交于负半轴,∴该函数图象经过第二、三、四象限,即不经过第一象限.故选:D.7.解:∵函数y=|x﹣1|=,∴当x>1时,y随x的增大而增大;当x<1时,y随x的增大而减小;故选:B.8.解:∵直线y=﹣2x+4与坐标轴的交点为(2,0)和(0,4),∴直线y=﹣2x+4与坐标轴所围成的三角形的面积等于,故选:B.9.解:∵一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),∴0=k+3,∴k=﹣3,∴y的值随x的增大而减小.故选:B.10.解:∵(﹣1,3)在一次函数y=kx+5的图象上,∴3=﹣k+5,解得:k=2,∴函数解析式为y=2x+5,∵点(﹣3,y1)、(2,y2)在一次函数y=2x+5的图象上,∴y1=﹣6+5=﹣1,y2=2×2+5=9,∵﹣1<3<9,∴y1<3<y2,第6页共7页故选:B.11.解:∵一次函数的解析式为y=2x﹣2.当x=0时,y=2x﹣2=﹣2,∴直线与y轴的交点坐标为(0,﹣2),故答案为(0,﹣2).12.解:∵正比例函数y=2x的图象向上平移3个单位,则平移后所得图象的解析式是:y=2x+3,∴k=2,b=3,∴k+b=5.故答案为:5.13.解:联立两函数解析式,得:,解得:.故答案为:.14.解:∵直线y=﹣x﹣b中,k=﹣1<0,∴y随x的增大而减小,∵﹣6<8,∴m>n.故答案为:>.15.解:一次函数y=(k﹣2)x+3﹣k的图象经过第一,二,三象限,则,解得2<k<3;若一次函数y=(k﹣2)x+3﹣k的图象不经过第四象限,则k﹣2>0且3﹣k≥0,解得2<k≤3;故答案为2<k<3,2<k≤3.16.解:(1)∵直线l:y=kx+3k(k≠0)经过点A(1,4),∴k+3k=4,解得:k=1;第7页共7页(2)由(1)得直线l的解析式为y=x+3,当x=﹣1时,y=﹣1+3=2,∴a=2.17.解:(1)当y=0时,x+3=0,解得x=﹣6,则A(﹣6,0);当x=0时,y=x+3=3,则B(0,3);故答案为(﹣6,0),(0,3);(2)△AOB的面积=×6×3=9,故答案为9;(3)由图象得:当y>0时,x的取值范围是x>﹣6,故答案为x>﹣6.