第10章辐射与波式传感器10.1红外传感器10.1.1工作原理红外辐射红外辐射俗称红外线,它是一种不可见光,由于是位于可见光中红色光以外的光线,故称红外线。它的波长范围大致在0.76~1000μm。工程上又把红外线所占据的波段分为四部分,即近红外、中红外、远红外和极远红外。电磁波谱图10-910-710-510-310-11010-110102103104λ/μmλ/cmλ/m宇宙射线射线X射线红外线微波无线电波紫外线可见光近红外远红外极远红外0369121518中红外λ/μm106105107声波红外辐射红外辐射本质上是一种热辐射。任何物体,只要它的温度高于绝对零度(-273℃),就会向外部空间以红外线的方式辐射能量,一个物体向外辐射的能量大部分是通过红外线辐射这种形式来实现的。物体的温度越高,辐射出来的红外线越多,辐射的能量就越强。另一方面,红外线被物体吸收后可以转化成热能。红外线作为电磁波的一种形式,红外辐射和所有的电磁波一样,是以波的形式在空间直线传播的,具有电磁波的一般特性,如反射、折射、散射、干涉和吸收等。红外线在真空中传播的速度等于波的频率与波长的乘积。10.1.2红外传感器一般由光学系统、探测器、信号调理电路及显示单元等组成。红外探测器是红外传感器的核心。红外探测器是利用红外辐射与物质相互作用所呈现的物理效应来探测红外辐射的。红外探测器的种类很多,按探测机理的不同,分为热探测器和光子探测器两大类。1.热探测器热探测器的工作机理是:利用红外辐射的热效应,探测器的敏感元件吸收辐射能后引起温度升高,进而使某些有关物理参数发生相应变化,通过测量物理参数的变化来确定探测器所吸收的红外辐射。特点:热探测器主要优点是响应波段宽,响应范围可扩展到整个红外区域,可以在常温下工作,使用方便,应用相当广泛。但与光子探测器相比,热探测器的探测率比光子探测器的峰值探测率低,响应时间长。热探测器主要有四类:热释电型、热敏电阻型、热电阻型和气体型。其中,热释电型探测器在热探测器中探测率最高,频率响应最宽,所以这种探测器倍受重视,发展很快。这里我们主要介绍热释电型探测器。+ + +- - -+ + + + + + +- - - - - - -+ + + + + + +- - - - - - -+-电介质电极电介质的极化与热释电红外光黑色膜(a)一般电介质(b)铁电体电介质的极化矢量与所加电场的关系sPsPEE00“铁电体”的极化强度(单位面积上的电荷)与温度有关。当红外辐射照射到已经极化的铁电体薄片表面上时引起薄片温度升高,使其极化强度降低,表面电荷减少,这相当于释放一部分电荷,所以叫做热释电型传感器。如果将负载电阻与铁电体薄片相连,则负载电阻上便产生一个电信号输出。输出信号的强弱取决于薄片温度变化的快慢,从而反映出入射的红外辐射的强弱,热释电型红外传感器的电压响应率正比于入射光辐射率变化的速率。2.光子探测器光子探测器的工作机理是:利用入射光辐射的光子流与探测器材料中的电子互相作用,从而改变电子的能量状态,引起光子效应。根据光子效应制成的红外探测器称为光子探测器。通过光子探测器测量材料电子性质的变化,可以确定红外辐射的强弱。10.1.21.红外测温仪红外测温仪是利用热辐射体在红外波段的辐射通量来测量温度的。当物体的温度低于1000℃时,它向外辐射的不再是可见光而是红外光了,可用红外探测器检测其温度。2.红外线气体分析仪红外线气体分析仪是根据气体对红外线具有选择性的吸收的特性来对气体成分进行分析的。不同气体其吸收波段(吸收带)不同,从图中可以看出,CO气体对波长为4.65μm附近的红外线具有很强的吸收能力,CO2气体则发生在2.78μm和4.26μm附近以及波长大于13μm的范围对红外线有较强的吸收能力。如分析CO气体,则可以利用4.26μm附近的吸收波段进行分析。几种气体对红外线的透射光谱100806040200透射率/(%)100806040200透射率/(%)100806040200透射率/(%)23456789101112131415/m23456789101112131415/mCOCO2CH4C2H4C2H6C2H2光源由镍铬丝通电加热发出3~10μm的红外线,切光片将连续的红外线调制成脉冲状的红外线,以便于红外线检测器信号的检测。测量气室中通入被分析气体,参比气室中封入不吸收红外线的气体(如N2等)。红外检测器是薄膜电容型,它有两个吸收气室,充以被测气体,当它吸收了红外辐射能量后,气体温度升高,导致室内压力增大。测量时(如分析CO气体的含量),两束红外线经反射、切光后射入测量气室和参比气室,由于测量气室中含有一定量的CO气体,该气体对4.65μm的红外线有较强的吸收能力,而参比气室中气体不吸收红外线,这样射入红外探测器的两个吸收气室的红外线光造成能量差异,使两吸收室压力不同,测量边的压力减小,于是薄膜偏向定片方向,改变了薄膜电容两电极间的距离,也就改变了电容C。如被测气体的浓度愈大,两束光强的差值也愈大,则电容的变化量也愈大,因此电容变化量反映了被分析气体中被测气体的浓度。红外线气体分析仪结构原理图放大器切光片光源抛物体反射镜同步机红外探测器滤波气室测量室滤波气室参比室薄膜定片被分析的气体为了消除干扰气体对测量结果的影响。所谓干扰气体,是指与被测气体吸收红外线波段有部分重叠的气体,如CO气体和CO2在4~5μm波段内红外吸收光谱有部分重叠,则CO2的存在对分析CO气体带来影响,这种影响称为干扰。为此在测量边和参比边各设置了一个封有干扰气体的滤波气室,它能将与CO2气体对应的红外线吸收波段的能量全部吸收,因此左右两边吸收气室的红外能量之差只与被测气体(如CO)的浓度有关。设置滤波气室的目的10.2微波传感器微波作为一种电磁波,具有电磁波的所有性质微波传感器是利用微波特性来检测某些物理量的器件或装置微波传感器是一种新型非接触式测量传感器微波是波长为1mm~1m的电磁波,可以细分为三个波段。10.2.1微波传感器的原理和组成微波特点:需要定向辐射装置;遇到障碍物容易反射;绕射能力差;传输特性好,传输过程中受烟雾、灰尘等的影响较小;介质对微波的吸收大小与介质介电常数成正比,如水对微波的吸收作用最强。原理:由发射天线发出微波,此波遇到被测物体时将被吸收或反射,使微波功率发生变化。若利用接收天线,接收到通过被测物体或由被测物体反射回来的微波,并将它转换为电信号,再经过信号调理电路,即可以显示出被测量,实现了微波检测。分类:分为反射式和遮断式两类。1.反射式微波传感器反射式微波传感器是通过检测被测物反射回来的微波功率或经过的时间间隔来测量被测量的。通常它可以测量物体的位置、位移、厚度等参数。2.遮断式微波传感器遮断式微波传感器是通过检测接收天线收到的微波功率大小来判断发射天线与接收天线之间有无被测物体或被测物体的厚度、含水量等参数的。微波传感器通常由微波发生器(即微波振荡器)、微波天线及微波检测器三部分组成。1.微波发生器是产生微波的装置。由于微波波长很短,即频率很高(300MHz~300GHz),要求振荡回路中具有非常微小的电感与电容,因此不能用普通的电子管与晶体管构成微波振荡器。构成微波振荡器的器件有调速管、磁控管或某些固态器件,小型微波振荡器也可以采用体效应管。2、微波天线由微波振荡器产生的振荡信号通过天线发射出去。为了使发射的微波具有尖锐的方向性,天线要具有特殊的结构。常用的天线有喇叭形、抛物面形、介质天线与隙缝天线等。喇叭形天线结构简单,制造方便,可以看作是波导管的延续。喇叭形天线在波导管与空间之间起匹配作用,可以获得最大能量输出。抛物面天线使微波发射方向性得到改善。常用的微波天线(a)扇形喇叭天线;(b)圆锥形喇叭天线;(c)旋转抛物面天线;(d)抛物柱面天线(a)(b)(c)(d)3.微波检测器电磁波作为空间的微小电场变动而传播,所以使用电流-电压特性呈现非线性的电子元件作为探测它的敏感探头。与其它传感器相比,敏感探头在其工作频率范围内必须有足够快的响应速度。作为非线性的电子元件可用种类较多(半导体PN结元件、隧道结元件等),根据使用情形选用。微波传感器的特点一种新型的非接触传感器。①有极宽的频谱(波长=1.0mm~1.0m)可供选用,可根据被测对象的特点选择不同的测量频率;②在烟雾、粉尘、水汽、化学气氛以及高、低温环境中对检测信号的传播影响极小,因此可以在恶劣环境下工作;③时间常数小,反应速度快,可以进行动态检测与实时处理,便于自动控制;④测量信号本身就是电信号,无须进行非电量的转换,从而简化了传感器与微处理器间的接口。⑤传输距离远,便于实现遥测和遥控;⑥微波无显著辐射公害。缺点:微波传感器存在的主要问题是零点漂移和标定尚未得到很好的解决。其次,测量环境对测量结果影响大,如温度、气压、取样位置等。微波传感器的应用微波发射天线Sd微波接收天线微波液位计水分子是极性分子。当微波场中有水分子时,偶极子受场的作用而反复取向,不断从电场中得到能量(储能),又不断释放能量(放能),前者表现为微波信号的相移,后者表现为微波衰减。这个特性可用水分子自身介电常数ε来表征,即ε=ε′+αε″ε′与ε″不仅与材料有关,还与测试信号频率有关,所有极性分子均有此特性。一般干燥的物体,其ε′在1~5范围内,而水的ε′则高达64,因此如果材料中含有少量水分子时,其复合ε′将显著上升,ε″也有类似性质。使用微波传感器,测量干燥物体与含一定水分的潮湿物体所引起的微波信号的相移与衰减量,就可以换算出物体的含水量。酒精含水量测量仪框图转换器T1衰减器A1转换器T2衰减器A2微波振荡器MS相位测定仪PT衰减测定仪AT相位差衰减差微波辐射计(温度传感器)任何物体,当它的温度高于环境温度时,都能够向外辐射热能。微波辐射计能测量对象的温度。普朗克公式在微波领域可近似为042(,)ckTeT微波温度传感器原理框图被测温度Ti环行器基准温度Tc带通滤波器低噪声放大器混频器本地振荡器中频放大器天线微波温度传感器最有价值的应用是微波遥测,将它装在航天器上,可以遥测大气对流层的状况,可以进行大地测量与探矿,可以遥测水质污染程度,确定水域范围,判断植物品种等。微波无损检测仪微波信号源移相器介质天线接收天线被测介质(移相器)微波检波器可变衰减器接收放大器记录仪稳压电源微波物位计被测对象前置放大器电压比较器放大器微波振荡器电源微波发射天线微波接收天线l微波定位传感器微波振荡器环行器转换器显示器物料小孔微波天线微波多普勒传感器微波测定移动物体的速度和距离是利用雷达能动地将电波发射到对象物,并接受返回的反射波的能动型传感器。若对在距离发射天线为r的位置上以相对速度v运动的物体发射微波,则由于多卜勒效应,反射波的频率发生偏移,如下式所示:式中fd2cosdvf当物体靠近靶时,多卜勒频率fd为正;远离靶时,fd为负。输入接收机的反射波的电压可用下式表示:4sin2dddruUft因此,根据测量到的差拍信号频率,可测定相对速度。但是,用此方法不能测定距离。为此考虑发射波长(频率)稍有不同的两个电波λ1和λ2,这两个波的反射波的多卜勒频率也稍有不同。若测定这两个多卜勒输出信号成分的相位差为ΔΦ,则可求出距离r:1221114r12124r10.3.1超声波工作原理波动(简称波):振动在弹性介质内的传播声波:其频率在16~2×104Hz之间,能为人耳所闻的机械波次声波:低于16Hz的机械波超声波:高于2×104Hz的机械波微波:频率在3×108~3×1011Hz之间的波声波的频率界限图超声波的波型纵波——质点振动方向与波的传播方向一致的波,称为纵波。它能在固体、液体和气体中传播;横波——质点振动方向垂直于传播方向的波,称为横波。它只能在固体中传播;表面波——质点的振动介于纵波与横波之间,沿着表面传播,振幅随深度增加而迅速衰减的波,称为表面波。表面波质