第1页共15页江苏省徐州市2021版九年级上学期数学期中考试试卷A卷姓名:________班级:________成绩:________一、单选题(共10题;共20分)1.(2分)小明做抛币实验,连续抛了5次都是反面向上,当他抛第6次时,反面向上是一件()事件A.必然B.不可能C.确定D.随机2.(2分)(2018九上·钦州期末)如图,已知△ABC中,AB=2,BC=3,∠B=90°,以点B为圆心作半径为r的⊙B,要使点A,C在⊙B外,则r的取值范围是()A.0<r<2B.0<r<3C.2<r<3D.r>33.(2分)(2017·高邮模拟)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有2个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,经过大量重复试验发现摸出白球的频率稳定在0.4附近,则n的值为()A.2B.3C.4D.54.(2分)将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是()A.y=(x+2)2+1B.y=(x+2)2﹣1C.y=(x﹣2)2+1D.y=(x﹣2)2﹣15.(2分)抛物线y=ax2+bx+c的图角如图,则下列结论:①abc0;②a+b+c=2;③a;④b1.其中正确的结论是()第2页共15页A.①②B.②③C.②④D.③④6.(2分)(2014·镇江)如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于()A.B.C.D.7.(2分)(2019九上·松滋期末)如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A,B,C为格点.作△ABC的外接圆⊙O,则的长等于()A.B.C.D.第3页共15页8.(2分)如图,在半径为5cm的⊙O中,圆心O到弦AB的距离为3cm,则弦AB的长是()A.4cmB.6cmC.8cmD.10cm9.(2分)已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数C.反比例函数D.二次函数10.(2分)(2019八上·灌云月考)如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第二次向右跳动3个单位至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次向右跳动5个单位至点A4(3,2),…,以此规律跳动下去,点A第2020次跳动至点A2020的坐标是()A.(1012,1011)B.(1009,1008)C.(1010,1009)D.(1011,1010)二、填空题(共6题;共6分)11.(1分)(2019·萧山模拟)有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,不放回,再抽出一张卡片,以第一次抽取的数字为十位数,第二次抽取的数字为个位数,则组成的两位数是6的倍数的概率是________.12.(1分)(2017·石城模拟)如图,已知二次函数y=x2+bx+c的图像的对称轴是直线x=1,过抛物线上两第4页共15页点的直线AB平行于x轴,若点A的坐标为(0,),则点B的坐标为________.13.(1分)(2019·连云港)如图,点A、B、C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为________.14.(1分)(2016九下·江津期中)如图,点A、B、C在直径为2的⊙O上,∠BAC=45°,则图中阴影部分的面积等于________.(结果中保留π).15.(1分)(2013·宁波)如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为________.16.(1分)直线y=x+2与抛物线y=x2的交点坐标是________.三、解答题(共8题;共87分)17.(5分)(2016九上·滨海期中)如图,ABCD是圆O的内接四边形,BC是圆O的直径,∠ACB=20°,D为弧的中点,求∠DAC的度数.18.(10分)(2019九上·秀洲期中)2019年第六届世界互联网大会在桐乡乌镇召开,某校九年级选拔了3名男生和2名女生参加某分会场的志愿者工作.本次学生志愿者工作一共设置了三个岗位,分别是引导员、联络员和咨询员.第5页共15页(1)若要从这5名志愿者中随机选取一位作为引导员,求选到女生的概率;(2)若甲、乙两位志愿者都从三个岗位中随机选择一个,请你用画树状图或列表法求出他们恰好选择同一个岗位的概率.(画树状图和列表时可用字母代替岗位名称)19.(10分)(2019·高新模拟)如图,线段AB经过圆心O,交⊙O于点A、C,点D为⊙O上一点,连结AD、OD、BD,∠A=∠B=30°.(1)求证:BD是⊙O的切线.(2)若OA=5,求OA、OD与AD围成的扇形的面积.20.(10分)如图,AB为⊙O的直径,弦CD⊥AB于点M,过点B作BE∥CD,交AC的延长线于点E,连结BC.(1)求证:BE为⊙O的切线;(2)如果CD=6,tan∠BCD=,求⊙O的直径.21.(10分)(2017·大冶模拟)某花木公司在20天内销售一批马蹄莲.其中,该公司的鲜花批发部日销售量y1(万朵)与时间x(x为整数,单位:天)部分对应值如下表所示.时间x(天)048121620销量y1(万朵)0162424160另一部分鲜花在淘宝网销售,网上销售日销售量y2(万朵)与时间x(x为整数,单位:天)关系如图所示.(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与x的变化规律,写出y1与x的函数关系式及自变量x的取值范围;(2)观察马蹄莲网上销售量y2与时间x的变化规律,请你设想商家采用了何种销售策略使得销售量发生了第6页共15页变化,并写出销售量y2与x的函数关系式及自变量x的取值范围;(3)设该花木公司日销售总量为y万朵,写出y与时间x的函数关系式,并判断第几天日销售总量y最大,并求出此时最大值.22.(15分)已知二次函数y=﹣x2+2x+k+2与x轴的公共点有两个.(1)求k的取值范围;(2)当k=1时,求抛物线与x轴的公共点A和B的坐标及顶点C的坐标;(3)观察图象,当x取何值时y>0.23.(10分)(2018·凉山)如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与轴交于,两点,过作直线与轴负方向相交成的角,且交轴于点,以点为圆心的圆与轴相切于点.(1)求直线的解析式;(2)将以每秒1个单位的速度沿轴向左平移,当第一次与外切时,求平移的时间.24.(17分)(2016·达州)如图,已知抛物线y=ax2+2x+6(a≠0)交x轴与A,B两点(点A在点B左侧),将直尺WXYZ与x轴负方向成45°放置,边WZ经过抛物线上的点C(4,m),与抛物线的另一交点为点D,直尺被x轴截得的线段EF=2,且△CEF的面积为6.(1)求该抛物线的解析式;第7页共15页(2)探究:在直线AC上方的抛物线上是否存在一点P,使得△ACP的面积最大?若存在,请求出面积的最大值及此时点P的坐标;若不存在,请说明理由.(3)将直尺以每秒2个单位的速度沿x轴向左平移,设平移的时间为t秒,平移后的直尺为W′X′Y′Z′,其中边X′Y′所在的直线与x轴交于点M,与抛物线的其中一个交点为点N,请直接写出当t为何值时,可使得以C、D、M、N为顶点的四边形是平行四边形.第8页共15页参考答案一、单选题(共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(共8题;共87分)第9页共15页17-1、18-1、18-2、19-1、19-2、第10页共15页20-1、20-2、21-1、第11页共15页21-2、21-3、第12页共15页22-1、22-2、22-3、23-1、第13页共15页23-2、24-1、第14页共15页24-2、第15页共15页24-3、