有限元期末考试答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1、有限元分析的基本思路(3分)首先,将物体或求解域离散为有限个互不重叠仅通过节点互相连接的子域(即单元),原始边界条件也被转化为节点上的边界条件,此过程称为离散化。其次,在单元内,选择简单近似函数来分片逼近未知的求解函数,即分片近似。具体做法是在单元上选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,这是有限元法的创意和精华所在。而整体区域上的解函数就是这些单元上的简单近似函数的组合。最后,基于与原问题数学模型(基本方程和边界条件)等效的变分原理或加权残值法,建立有限元方程(即刚度方程),从而将微分方程转化为一组变量或其导数的节点值为未知量的代数方程组。从而借助矩阵表示和计算机求解代数方程组得到原问题的近似解。2、用有限元法分析实际工程问题有哪些基本步骤?需要注意什么问题?1.结构的离散化,2单元分析2.1选择位移函数2.2载荷等效2.3单元刚度矩阵3整体分析3.1集成等效节点载荷3.2集成整体刚度矩阵3.3约束边界条件1)建立实际工程问题的计算模型利用几何、载荷的对称性简化模型建立等效模型2)选择适当的分析工具侧重考虑以下几个方面:多物理场耦合问题大变形网格重划分3)前处理(Preprocessing)建立几何模型(GeometricModeling,自下而上,或基本单元组合)有限单元划分(Meshing)与网格控制4)求解(Solution)给定约束(Constraint)和载荷(Load)求解方法选择计算参数设定5)后处理(Postprocessing)后处理的目的在于分析计算模型是否合理,提出结论。用可视化方法(等值线、等值面、色块图)分析计算结果,包括位移、应力、应变、温度等;最大最小值分析;特殊部位分析。3、在有限单元法中,位移模式应满足哪些基本条件。(3分)(1)位移模式必须包含单元刚体位移;(2)位移模式必须包含单元的常应变;(3)位移模式在单元内要连续,且唯一在相邻单元之间要协调。4、写出弹性力学的基本方程、基本假设和基本变量(3分)平衡方程几何方程物理方程具体方程见笔记四个基本变量:外力、应力、应变、位移5在总体坐标系下,若已知一杆单元的刚度矩阵为K,在在材料相同,截面积相同情况下,试求:1)与他平行且杆长相等的杆单元的刚度矩阵;2)与它平行而杆长为2倍的杆单元的刚度矩阵3)将其本身旋转180°后的刚度矩阵。(3分)(1)K(2)K/2(3)K6、简述有限单元法结构刚度矩阵的特点。(3分)(1)对称性;(2)奇异性;(3)主对角元恒正;(4)稀疏性;(5)非零元素带状分布7、简述有限元法中选取单元位移函数(多项式)的一般原则。(3分)一般原则有1广义坐标的个数应该与结点自由度数相等;2选取多项式时,常数项和坐标的一次项必须完备;3多项式的选取应由低阶到高阶;4尽量选取完全多项式以提高单元的精度。二、将受自重作用的等截面直杆划分成3个等长的单元,试分别按材料力学和有限元法的思路求解,并对结果进行比较分析。(10分)位移。三、如图所示等腰三角形单元,单元的边长及结点编号见图,其厚度为t,弹性模量为E,泊松比为0时,求其形态矩阵[N]、应变矩阵B和应力矩阵S、单元刚度矩阵eK。(19分)1、解:设图1所示的各点坐标为点1(a,0),点2(a,a),点3(0,0)于是,可得单元的面积为12A2a,及(1)形函数矩阵N为(7分)12122121(0aa)a1(00a)a1(aa0)aNxyNxyNxy;123123NNNNIIINNN(2)应变矩阵B和应力矩阵S分别为(7分)12a010-aa-aaB,220010aaa0B,32-a0100a0-aB;123BBBB12a00-aa11-aa22ES,22000aa1a02ES,32-a000a10-a2ES;123123SDBBBSSS(3)单元刚度矩阵eK(6分)111213T2122233132333110211312011110014020200200020111001eEttAKKKKBDBKKKKKK2、图2(a)所示为正方形薄板,其板厚度为t,四边受到均匀荷载的作用,荷载集度为21/Nm,同时在y方向相应的两顶点处分别承受大小为2/Nm且沿板厚度方向均匀分布的荷载作用。设薄板材料的弹性模量为E,泊松比0。试求(1)利用对称性,取图(b)所示1/4结构作为研究对象,并将其划分为4个面积大小相等、形状相同的直角三角形单元。给出可供有限元分析的计算模型(即根据对称性条件,在图(b)中添加适当的约束和荷载,并进行单元编号和结点编号)。(2)设单元结点的局部编号分别为i、j、m,为使每个单元刚度矩阵eK相同,试在图(b)中正确标出每个单元的合理局部编号;并求单元刚度矩阵eK。(3)计算等效结点荷载。(4)应用适当的位移约束之后,给出可供求解的整体平衡方程(不需要求解)。123aa3①②③④2、解:(1)对称性及计算模型正确(5分)(2)正确标出每个单元的合理局部编号(3分)(3)求单元刚度矩阵eK(4分)(4)计算等效结点荷载(3分)(5)应用适当的位移约束之后,给出可供求解的整体平衡方程(不需要求解)。(5分)图2yx2/Nm21/Nm2m2m2/NmO(a)(b)jmmmmiiiijjj1N/m21N/m12456对称1011012020031214301201eEtK对称123356322000026121006120146101620212vvuEttvuu

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功