天津市河北区八年级(上)期中数学试卷

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页,共13页期中数学试卷题号一二三总分得分一、选择题(本大题共8小题,共24.0分)1.以下标志中,不是轴对称图形的是(  )A.B.C.D.2.要使四边形木架(用四根木条钉成)不变形,至少要再钉上几根木条(  )A.1B.2C.3D.43.如图,∠1的度数为(  )A.100°B.110°C.120°D.130°4.如图,∠1+∠2+∠3=180°,那么∠4+∠5+∠6的度数是(  )A.540°B.360°C.180°D.不能确定5.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.点MB.点NC.点PD.点Q6.给出下列说法:①三条线段组成的图形叫三角形;②三角形的角平分线是射线;③三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;④任何一个三角形都有三条高、三条中线、三条角平分线;⑤三角形的三条角平分线交于一点,且这点在三角形内.正确的说法有(  )A.1个B.2个C.3个D.4个7.如图,在△ABC中,AC=5,中线AD=7,则AB边的取值范围是(  )A.1<AB<29B.4<AB<24C.5<AB<19D.9<AB<19第2页,共13页8.如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=6cm,一条线段PQ=AB,P,Q两点分别在线段AC和AC的垂线AX上移动,若以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,则AP的值为(  )A.6cmB.12cmC.12cm或6cmD.以上答案都不对二、填空题(本大题共8小题,共24.0分)9.点P(2,-3)关于x轴的对称点坐标为______.10.一个多边形的内角和比外角和的3倍多180°,那么这个多边形是______边形.11.如图,△ABC中,∠A=80°,△ABC的两条角平分线交于点P,∠BPD的度数是______.12.如图,△ABC中,BC=10,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.则△AEG的周长=______.13.如图,在四边形ABCD中,AC平分∠DAB,AD=5,AB=6,若△ACD的面积为10,则△ABC的面积为______.14.如图,△ABC≌△ADE,∠DAC=70°,∠BAE=100°,BC、DE相交于点F,则∠DFB度数为______.15.△ABC中,∠C=90°,AC=BC,分别过A、B向过C的直线CD作垂线,垂足分别为E、F,若AE=5,BF=3,则EF=______.第3页,共13页16.如图,∠ABC=∠ACB,BD、CD、BE分别平分△ABC的内角∠ABC、外角∠ACP、外角∠MBC,以下结论:①AD∥BC;②DB⊥BE;③∠BDC+∠ABC=90°;④∠A+2∠BEC=180°.其中正确的结论有______.(填序号)三、解答题(本大题共6小题,共48.0分)17.如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C=70°,求∠AEC和∠DAE的度数.18.如图,AD⊥BC,BD=CD,点C在AE的垂直平分线上,若AB=5cm,BD=3cm,求BE的长.19.已知:如图,∠ACB=90°,AC=BC,CD是经过点C的一条直线,过点A、B分别作AE⊥CD、BF⊥CD,垂足为E、F,求证:CE=BF.第4页,共13页20.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.已知AD=2cm,BC=5cm.(1)求证:FC=AD;(2)求AB的长.21.如图:AE⊥AB,AF⊥AC,AE=AB,AF=AC,(1)图中EC、BF有怎样的数量和位置关系?试证明你的结论.(2)连接AM,求证:MA平分∠EMF.第5页,共13页22.如图1,点A、D在y轴正半轴上,点B、C分别在x轴上,CD平分∠ACB与y轴交于D点,∠CAO=90°-∠BDO.(1)求证:AC=BC;(2)如图2,点C的坐标为(4,0),点E为AC上一点,且∠DEA=∠DBO,求BC+EC的长.第6页,共13页答案和解析1.【答案】D【解析】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选:D.根据轴对称图形的概念对各选项分析判断即可得解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】A【解析】解:根据三角形的稳定性可得,至少要再钉上1根木条.故选:A.根据三角形具有稳定性可得:沿对角线钉上1根木条即可.此题主要考查了三角形具有稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性,而四边形不具有稳定性.3.【答案】C【解析】解:∠2=180°-140°=40°,∴∠1=80°+40°=120°,故选:C.根据三角形的外角的性质计算即可.本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.4.【答案】B【解析】解:由三角形的外角和定理可知,∠4+∠5+∠6=360°,故选:B.根据三角形的外角和为360°解答.本题考查的是三角形的外角的性质,掌握三角形的外角和为360°是解题的关键.5.【答案】A【解析】【分析】本题主要考查的是角平分线的性质,熟练掌握角平分线的性质是解题的关键.角的平分线上的点到角的两边的距离相等.【解答】解:观察图形可知点M在∠AOB的角平分线上,∴点M到∠AOB两边距离相等.故选A6.【答案】B第7页,共13页【解析】解:由不在同一条直线上的三条线段首位顺次连接作出的图形叫三角形,∴①错误;三角形的角平分线是线段,∴②错误;直角三角形的三条高的交点是三角形的直角顶点,∴③错误;任何一个三角形都有三条高、三条中线、三条角平分线,∴④正确;三角形的三条角平分线都在三角形内部且交于一点,这点也在三角形内,∴⑤正确;正确的有2个;故选B根据三角形定义判定①即可;根据三角形的角平分线、中线、高的定义判断其余4个即可.本题主要考查对三角形定义,三角形的角平分线、中线、高等知识点的理解和掌握,能熟练地运用定义进行说理是解此题的关键.7.【答案】D【解析】解:如图,延长AD至E,使DE=AD,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴AB=CE,∵AD=7,∴AE=7+7=14,∵14+5=19,14-5=9,∴9<CE<19,即9<AB<19.故选:D.延长AD至E,使DE=AD,然后利用“边角边”证明△ABD和△ECD全等,根据全等三角形对应边相等可得AB=CE,再利用三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出CE的取值范围,即为AB的取值范围.本题考查了全等三角形的判定与性质,三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边,“遇中线,加倍延”构造出全等三角形是解题的关键.8.【答案】C【解析】【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=6cm,可据此求出P点的位置.②Rt△QAP≌Rt△BCA,此时AP=AC=12cm,P、C重合.本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.【解答】解:①当AP=CB时,∠C=∠QAP=90°,在Rt△APQ与Rt△CBA中,,第8页,共13页∴Rt△APQ≌Rt△CBA(HL),即AP=BC=6cm;②当P运动到与C点重合时,AP=AC,∠C=∠QAP=90°,在Rt△QAP与Rt△BCA中,,∴Rt△QAP≌Rt△BCA(HL),即AP=AC=12cm.综上所述,AP=6cm或12cm.故选:C.9.【答案】(2,3)【解析】解:点P(2,-3)关于x轴的对称点坐标为(2,3),故答案为:(2,3).根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.10.【答案】九【解析】解:根据题意,得:(n-2)•180=360×3+180,解得:n=9.则这是个九边形,故答案为:九.多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是1260度.n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.本题主要考查了多边形内角与外角,此题要结合多边形的内角和公式寻求等量关系,构建方程即可求解.11.【答案】50°【解析】解:∵△ABC中,∠A=80°,∴∠ABC+∠ACB=180°-∠A=100°,∵△ABC的两条角平分线交于点P,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠PBC+∠PCB=(∠ABC+ACB)=×100°=50°,∴∠BPD=∠PBC+∠PCB=50°;故答案为:50°.由三角形内角和定理得出∠ABC+∠ACB=180°-∠A=100°,由角平分线定义得出∠PBC+∠PCB=(∠ABC+ACB)=50°,再由三角形的外角性质即可得出结果.本题考查了三角形内角和定理、角平分线定义以及三角形的外角性质;熟练掌握三角形内角和定理是解题的关键.12.【答案】10第9页,共13页【解析】解:∵DE是AB的垂直平分线,∴AE=BE,同理AG=CG,∴△AEG的周长为AE+AG+EG=BE+EG+CG=BC=10.故答案为:10.根据线段的垂直平分线的性质可得AE=BE、AG=CG,据此即可求解.此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.13.【答案】12【解析】解:作CE⊥AB于E,CF⊥AD于F,由题意得,×AD×CF=10,解得CF=4,∵AC平分∠DAB,CE⊥AB,CF⊥AD,∴CE=CF=4,∴△ABC的面积=×AB×CE=12,故答案为:12.作CE⊥AB于E,CF⊥AD于F,根据三角形的面积公式求出CF,根据角平分线的性质得到CE=CF,根据三角形的面积公式计算即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.14.【答案】15°【解析】解:∵△ABC≌△ADE,∴∠B=∠D,∠BAC=∠DAE,又∠BAD=∠BAC-∠CAD,∠CAE=∠DAE-∠CAD,∴∠BAD=∠CAE,∵∠DAC=70°,∠BAE=100°,∴∠BAD=(∠BAE-∠DAC)=(100°-70°)=15°,在△ABG和△FDG中,∵∠B=∠D,∠AGB=∠FGD,∴∠DFB=∠BAD=15°.故答案为:15°.先根据全等三角形对应角相等求出∠B=∠D,∠BAC=∠DAE,所以∠BAD=∠CAE,然后求出∠BAD的度数,再根据△ABG和△FDG的内角和都等于180°,所以∠DFB=∠BAD.本题主要利用全等三角形对应角相等的性质,解题时注意:全等三角形的对应边相等,对应角相等.15.【答案】8或2【解析】解:∵∠C=90°,AC=BC,∴∠BCF=∠EAC∴△BFC≌△CEA,∴CF=AE=5CE=BF=3①∴EF=CF+CE=5+3=8.第10页,共13页②EF=CF-CE=5-3=2认真画出图形,找出一组全等三角形即可,利用全等三角形的对应边相等可得答案.本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.本题要注意思考全面,两种情况,不能遗漏.16.【答案】①②③④【解析】解:①∵BD、CD分别平分△ABC的内角∠ABC、外角∠ACP,∴AD平分△ABC的外角∠FAC,∴∠FAD=∠DAC,∵∠F

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功