顶点式法求二次函数解析式

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

顶点式法求二次函数解析式①二次函数y=ax2+bx+c(a,b,c是常数,a≠0)用配方法可化成:y=a(x-h)2+k,顶点是(h,k)配方:y=ax2+bx+c=___________=_______________=______________=(x+ab2)2+abac442,对称轴是x=ab2,顶点坐标是(ab2,abac442),h=-ab2,k=abac442,所以,我们把y=a(x-h)2+k叫做二次函数的顶点式②已知二次函数图象的顶点坐标(h,k)或者对称轴方程x=h或者最大值k,最小值k,当然还要知道抛物线上的一个一般点时,通常设函数解析式为y=a(x-h)2+k(a≠0),再将那个一般点的坐标带入,求出a的值,最后写出函数解析式再化成一般式就行了,有时可能需要两个一般点列方程组求出a的值或h或k的值。例:已知抛物线的顶点为(-1,-3),与y轴交点为(0,-5),求抛物线的解析式解:设所求的二次函数为y=a〔x-(-1)〕2-3=a(x+1)2-3,由条件得:点(0,-5)在抛物线上,a-3=-5,得a=-2,故所求的抛物线解析式为y=-2(x+1)2-3,即:y=-2x2-4x-5例:已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6),求此二次函数的解析式解:∵二次函数的最大值是2∴抛物线的顶点纵坐标为2又∵抛物线的顶点在直线y=x+1上,∴当y=2时,x=1。故顶点坐标为(1,2),所以可设二次函数的解析式为y=a(x-1)2+2,又∵图象经过点(3,-6),∴-6=a(3-1)2+2,得a=-2,故所求二次函数的解析式为:y=-2(x-1)2+2,即:y=-2x2+4x例:如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行),试问:如果货车按原来速度行驶,能否完全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?解:因为抛物线的顶点为(0,0),所以可设抛物线解析式为y=a(x-0)2+0,即y=ax2,桥拱最高点O到水面CD的距离为hm,则D(5,-h),B(10,-h-3).∴25,1003.ahah解得1,251.ah抛物线的解析式为y=-125x2.(2)水位由CD处涨到点O的时间为:1÷0.25=4(小时).货车按原来速度行驶的路程为:40×1+40×4=200280,∴货车按原来速度行驶不能安全通过此桥.设货车速度提高到xkm/h.当4x+40×1=280时,x=60.∴要使货车完全通过此桥,货车的速度应超过60km/h.练一练:①抛物线顶点P(-1,-8),且过点A(0,-6),求这个二次函数的解析式②二次函数的图象的顶点在原点,且过点(2,4),求这个二次函数的关系式③已知抛物线的顶点坐标为(-1,-3),与y轴交点为(0,-5),求二次函数的关系式④已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式⑤已知二次函数的图象经过原点,且当x=3时,有最小值-4,求这个二次函数的解析式⑥已知抛物线顶点(1,16),且抛物线与x轴的两交点间的距离为8⑦已知二次函数当x=-3时,有最大值-1,且当x=0时,y=-3,求二次函数的关系式

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功