某电子厂供配电系统设计

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1摘要本论文主要是对小型电子厂供配电系统的电气部分进行设计。电子厂由户外引入10kV的高压电源,经过电子厂变电所降为220/380V的低压电,直接供给电子厂车间的动力系统和照明系统。在选择电气设备之前,先对电子厂负荷进行计算,确定电子厂总的负荷容量,同时在低压母线侧进行无功功率的补偿,以提高功率因数。根据补偿后的负荷容量,选择电子厂变电所变压器的容量和台数,然后确定电子厂采用的供电系统,选择合适的车间配电方案,画出供配电系统主接线图。高压一次设备、低压一次设备和导线截面积选择时,都必须满足电路正常条件下和短路故障条件下工作的要求。电气设备不仅要满足在短路故障条件下的工作要求,还必须按最大可能的短路故障时的动稳态度和热稳态度进行校验,以判断设备是否满足工作要求。电路发生三相短路时的短路电流电流最大,计算三相短路电流,以进行设备的校验。关键词:负荷计算主接线继电保护设备选择率补偿短路电流21引言电能是现代工业生产的主要能源和动力。电能既易于由其他形式的能量转换而来,又易于转换为其他形式的能量以供应用。电能的输送和分配既简单经济,又便于控制、调节和测量,有利于实现生产自动化。因此,电能在现代工业生产及整个国民经济生活中应用极为广泛。一般中小型电子厂的电压进线电压为6-10kV。电能先经高压配电所集中,在由高压配电线路将电能分送到各车间变电所,或者高压配电线路供给给高压用电设备。车间变电所内装设有电力变压器,将6-10kV的高压降为一般低压用电设备所需的电压(220/380V),然后由低压配电线路将电能分送给各用电设备。对于大型电子厂及其某些电源进线电压为35kV及以上的中型电子厂,一般经过两次降压,也就是电源进厂后,先经总降压变电所,有大容量的电力变压器将35kV及以上的电源电压降为6-10kV的配电电压,再通过高压配电线路或高压配电所将电能送到各个车间变电所,最后经变压器降为一般低压用电设备所需的电压。有的35kV进线的电子厂,只经一次降压,及35kV线路直接引入靠近负荷中心的车间变电所,经车间变电所的配电变压器直接降为低压用电设备所需电压。这种配电方式称为高压深入负荷中心的直配方式。这样可以省去一级中间变压,从而简化了供电系统,节约有色金属,降低电能损耗和电压损耗,提高供电质量。然而这要根据厂区环境条件是否满足35kV架空线路深入负荷中心的“安全走廊”要求而定,否则不宜采用,以确保供电安全。对于总供电容量不超过1000kV的小型电子厂,通常只设一个降压变电所,将6-10kV电压降为低压用电设备所需的电压(220/380V)。如果电子厂所需容量不大于160kVA时,一般采用低压电源进线,电子厂只需设一个低压配电间。本厂属于中小型电子厂,采用10kV供电电源,在车间东侧1020m处有一座10kV配电室,先用1km的架空线路,后改为电缆线路至本厂变电所,将6-10kV的高压降为一般低压用电设备所需的电压(220/380V),然后由低压配电线路将电能分送给各用电设备。2电力负荷及其计算2.1负荷分级及供电电源措施2.1.1负荷计算的目的和意义3计算负荷是一个假想的持续负荷,其热效应与同时间内实际变动负荷所产生的热效应相等。在供配电系统中,以30min的最大计算负荷作为选择电气设备的依据,并认为只要电气设备能承受该负荷的长期作用,即可在正常情况下长期运行。一般将这个最大计算负荷简称计算负荷Pc。负荷计算的目的是:①计算变配电所内变压器的负荷电流及视在功率,作为选择变压器容量的依据。②计算流过各主要电气设备(断路器、隔离开关、母线、熔断器等)的负荷电流,作为选择这些设备的依据。③计算流过各条线路(电源进线、高低压配电线路等)的负荷电流,作为选择这些线路电缆或导线截面的依据。④计算尖峰负荷,用于保护电器的整定计算和校验电动机的启动条件。⑤为电气设计提供技术依据。计算负荷是工程设计中按照发热条件选择导线和电气设备的依据。计算负荷是确定供电系统、选择变压器容量、电气设备、导线截面和仪表量程的依据,也是整定继电保护的重要依据。计算负荷确定的是否正确,直接影响到电器和导线的选择是否经济合理。正确进行负荷计算是供电设计的前提,也是实现供电系统安全、经济运行的必要手段。如果计算负荷确定的过大,将使电器和导线电缆选得过大,造成投资和有色金属的浪费,而变压器负荷率较低运行时,也将造成长期低效率运行。如果计算负荷确定的过小,又将使电器和导线处于过负荷运行,增加电能损耗,产生过热,导致绝缘过早老化甚至产生火灾,造成更大的经济损失。因此,正确确定计算负荷具有很大的意义。2.1.2负荷计算的方法在已知用电设备的情况下,负荷计算有需要系数法、二项式法和利用系数法;在未知用电设备的情况下,负荷计算有负荷密度法、单位指标法和住宅用电量指标法。①需要系数法用设备功率乘以需要系数,直接求出计算负荷。这种方法比较简便,应用广泛,尤其适用于配变电所的负荷计算。②利用系数法采用利用系数求出最大负荷班的平均负荷,再考虑设备台属和功率差异的影响,4乘以与有效台数有关的最大系数的计算负荷。这种方法的理论根据是概率论和数理统计,因而计算结果比较接近实际,但因利用系数的实测与统计较困难,在电气设计中一般不用。③二项式法在设备组容量之和的基础上,考虑若干容量最大设备的影响,采用经验系数进行加权求和法计算负荷。④负荷密度法当已知某建筑面积负荷密度ρ时,某建筑的平均负荷可按下式计算Pav=ρ·A(kW)式中:ρ——负荷密度(kW/m2)A——某建筑面积(m2)在建筑方案设计阶段,可采用建筑面积负荷密度法进行负荷估算。在建筑施工阶段设计时,可采用需要系数法进行复核。2.2无功功率补偿工业与民用用电设备中,有大量设备的工作需要通过向系统吸收感性的无功功率来建立交变的磁场,这使系统输送的电能容量中无功功率的成分增加,在系统变配电设备及输送线路规格一定的情况下,直接影响到有功功率的输送。电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此可以降低线路和变压器因输送无功功率造成的电能损耗,这就是无功补偿。2.2.1功率因数①功率因数低对供配电系统的影响功率因数低是无功功率大的表现,无功功率大会对系统造成如下影响:1)使配电设备的容量增加:在三相交流系统中,电流和有功功率的关系式是:3cosPIU其中有功功率P是系统向用电设备提供的,要转化为其他形式能量的功率,这部分功率是不能减少的。因此在电压一定时,功率因数越小,即无功分量越大,则电流5越大。若要承受较大的电流,系统电气设备的容量必然要加大,这就会增加系统成本,使电气设备利用率降低。2)使供电系统的损耗增加:从供配电系统功率损耗计算式中不难看出,通过系统的电流增加,系统上的功率损耗也会增加。3)使电压损失增加:线路电流越大,电压损失也就越大。4)使发电机效率降低:系统中负荷对无功功率需求量增大时,发电机必须增发相应的无功功率去平衡,这样就降低了效率。②提高功率因数的意义在用电设备中绝大部分为感性负荷,使用电单位功率因数小于1。为了保证供电质量和节能,充分利用电力系统中发配电设备的容量,减小供电线路的截面,减小电网的功率损耗、电能损耗,减小线路的电压损失,必须提高用电单位的功率因数。对用户的补偿容量在《全国供电规则》中已有规定:“无功电力应就地平衡,用户应在提高用电自然功率应属的基础上,设计和装置无功补偿设备,并做到随其负荷和电压变动及时投入和切除,防止无功电力倒送,用户在当地供电局规定的电网高峰时的功率因数,应达到下列规定:高压供电的用户和高压供电装有负荷调整电压装置的电力用户,功率因数为0.9以上;其他100kVA(kW)及以上电力用户和大、中型电力排灌站,功率因数为0.85以上。因此,在供配电系统中,必须改变无功功率大小,即提高功率因数,以便提高系统中设备的有效利用率。2.2.2无功补偿的选择要使供配电系统的功率因数提高,一般可从两个方面采取措施。一是提高用电设备的自然功率因数,自然功率因数是指不用任何补偿装置时的功率因数;一是采取人工补偿的方法使使总功率因数得以提高,总功率因数是指采用了补偿装置后得到的功率因数。①提高自然功率因数的方法:电动机类电气设备的额定功率因数是较高的,一般都在0.85以上,可是当它们在非额定状态下(如轻载)工作时,功率因数和效率都将大幅度降低,对此,主要采用如下措施改善自然功率因数:1)合理选择电动机的型号和规格。62)合理选择变压器的型号和规格,避免因长期轻载运行而造成的功率因数降低。②采用人工补偿提高功率因数的方法:人工补偿方法有发电机补偿、电容器补偿、调相机补偿和静止补偿器补偿,主要有两种,一是采用同步电动机补偿,一是采用并联电容器补偿。1)在供配电系统中一般只有在能使负荷使用要求得以满足的情况下,才采用同步电动机代替异步电动机工作,且同步电动机兼作无功补偿设备,此时无功补偿的调节可以做到平滑的自动调节;专为无功补偿而设的同步电动机称为同步调相机,由于投资和损耗较大,又不便于维护、检修,供配电系统中很少采用这种补偿方式。2)采用并联电容器补偿是目前供配电系统中普遍采用的一种无功补偿方法,也叫移相电容器静止无功补偿。它具有功损耗小、运行维护方便、补偿容量增减方便、个别电容器的损坏不影响整体使用等特点,但不能实现无级调节。2.2.3无功补偿的计算要使功率因数由cos提高到cos,必须装设无功补偿装置,其容量为:30303030(tantan)ccQQQPqPtantancq,称为无功补偿率①电子厂无功功率的补偿:30(tantan)cQP392.58{tan(arccos0.6)-tan(arccos0.92)}356.2vark取cQ为360vark②补偿后变压器的容量和功率因数补偿后变压器器低压侧的视在计算负荷:222230(2)30(2)30(2)392.58523.23-360SPQkVA()425.16kVA变压器低压侧的计算电流:3023022/(3)425.16/(30.38)645.98NISUA()()()主变压器的功率损耗:300.010.01425.164.25TPSkWkW7300.050.05425.16var21.26varTQSkk变压器高压侧的计算负荷:有功计算负荷:30(1)30(2)392.584.25396.83TPPPkW无功计算负荷:30(1)30(2)523.23-36021.26184.49varTQQQk视在计算负荷:222230(1)30(1)30(1)396.83184.49437.62SPQkVA计算电流:302301/(3)425.16/(30.38)645.98NISUA()()功率因数:(1)30(1)30(1)cos/396.83/437.620.9070.9PS补偿后功率因数满足要求。3变压器的选择及其电气主接线3.1变压器的选择3.1.1电力变压器及其分类电力变压器是变电所中最关键的一次设备,其主要功能是将电力系统的电能电压升高或降低,以利于电能的合理输送、分配和使用。常用变压器的种类,在中低压供配电系统中,常用的电力变压器有如下几种分类方式:①按相数分类:有三相电力变压器和单相电力变压器。大多数场合使用三相电力变压器,在一些低压单相负载较多的场合,也使用单相变压器。②按绕组导电材料分类:有铜绕组变压器和铝绕组变压器,目前一般采用铜绕组变压器。③按绝缘介质分类:有油浸式变压器和干式变压器两大类。④按绕组联结组别分类:有Yyn0和Dyn11两种。3.1.2电力变压器的连接组别电力变压器的联结组别,是指变压器一、二次绕组因采取不同的联结方式而形成8变压器一、

1 / 33
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功