.中考数学圆压轴题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

.中考数学圆压轴题1/9CBOAD1推理运算如图,AB为O直径,CD为弦,且CDAB,垂足为H.(1)OCD的平分线CE交O于E,连结OE.求证:E为ADB的中点;(2)如果O的半径为1,3CD,①求O到弦AC的距离;②填空:此时圆周上存在个点到直线AC的距离为12.2如图6,在Rt△ABC中,∠ABC=90°,D是AC的中点,⊙O经过A、B、D三点,CB的延长线交⊙O于点E.(1)求证AE=CE;(2)EF与⊙O相切于点E,交AC的延长线于点F,若CD=CF=2cm,求⊙O的直径;(3)若nCDCF(n0),求sin∠CAB.3已知:如图,在半径为4的⊙O中,AB,CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连结DE,DE=15.(1)求证:AMMBEMMC;(2)求EM的长;(3)求sin∠EOB的值.4如图,已知⊙O的直径AB=2,直线m与⊙O相切于点A,P为⊙O上一动点(与点A、点B不重合),PO的延长线与⊙O相交于点C,过点C的切线与直线m相交于点D.(1)求证:△APC∽△COD.(2)设AP=x,OD=y,试用含x的代数式表示y.(3)试探索x为何值时,△ACD是一个等边三角形.5如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.(1)试判断BC所在直线与小圆的位置关系,并说明理由;(2)试判断线段AC、AD、BC之间的数量关系,并说明理由;(3)若8cm10cmABBC,,求大圆与小圆围成的圆环的面积.(结果保留π)6在Rt△ABC中,BC=9,CA=12,∠ABC的平分线BD交AC与点D,DE⊥DB交AB于点E.(1)设⊙O是△BDE的外接圆,求证:AC是⊙O的切线;(2)设⊙O交BC于点F,连结EF,求EFAC的值.ABDEOCHABCEDOM.中考数学圆压轴题2/97如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0).(1)试写出点A,B之间的距离d(厘米)与时间t(秒)之间的函数表达式;(2)问点A出发后多少秒两圆相切?8如图,在△ABC中,∠BAC=90°,BM平分∠ABC交AC于M,以A为圆心,AM为半径作⊙A交BM于N,AN的延长线交BC于D,直线AB交⊙A于P、K两点,作MT⊥BC于T.(1)求证:AK=MT;(2)求证:AD⊥BC;(3)当AK=BD时,求证:BMACBPBN.9如图,AB为O的直径,CDAB于点E,交O于点D,OFAC于点F.(1)请写出三条与BC有关的正确结论;(2)当30D,1BC时,求圆中阴影部分的面积.10如图,已知O的直径AB垂直于弦CD于点E,过C点作CGAD∥交AB的延长线于点G,连接CO并延长交AD于点F,且CFAD.(1)试问:CG是O的切线吗?说明理由;(2)请证明:E是OB的中点;(3)若8AB,求CD的长.11如图11,⊙P与⊙O相交于A、B两点,⊙P经过圆心O,点C是⊙P的优弧上任意一点(不与点A、B重合),连结AB、AC、BC、OC。(1)指出图中与∠ACO相等的一个角;(2)当点C在⊙P上什么位置时,直线CA与⊙O相切?请说明理由;(3)当∠ACB=60°时,两圆半径有怎样的大小关系?请说明你的理由。12如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连结AD、BD.(1)求证:∠ADB=∠E;(3分)(2)当点D运动到什么位置时,DE是⊙O的切线?请说明理由.(3分)(3)当AB=5,BC=6时,求⊙O的半径.(4分)ABNMPBCDTNMAK(第27题图)ADFEOCBG(第10题图)CBAOFDEOEDCBA(第12题图).中考数学圆压轴题3/91(1)OCOE,EOCE······················································(1分)又OCEDCE,EDCE.OECD∥.························································································(2分)又CDAB,90AOEBOE.E为ADB的中点.···············································································(3分)(2)①CDAB,AB为O的直径,3CD,1322CHCD.·············································································(4分)又1OC,332sin12CHCOBOC.60COB,····················································································(5分)30BAC.作OPAC于P,则1122OPOA.······················································(6分)②3········································································································(7分)2证明:(1)连接DE,∵∠ABC=90°∴∠ABE=90°,∴AE是⊙O直径.························································(1分)∴∠ADE=90°,∴DE⊥AC.···········································(2分)又∵D是AC的中点,∴DE是AC的垂直平分线.∴AE=CE.··································································(3分)(2)在△ADE和△EFA中,∵∠ADE=∠AEF=90°,∠DAE=∠FAE,∴△ADE∽△EFA.·······················································(4分)∴AEADAFAE,∴AEAE26.·························································(5分)∴AE=23cm.·····················································································(6分)(3)∵AE是⊙O直径,EF是⊙O的切线,∴∠ADE=∠AEF=90°,.中考数学圆压轴题4/9∴Rt△ADE∽Rt△EDF.∴DFDEEDAD.·············································(7分)∵nCDCF,AD=CD,∴CF=nCD,∴DF=(1+n)CD,∴DE=n1CD.······(8分)在Rt△CDE中,CE2=CD2+DE2=CD2+(n1CD)2=(n+2)CD2.∴CE=2nCD.·················································································(9分)∵∠CAB=∠DEC,∴sin∠CAB=sin∠DEC=CECD=21n=22nn.(103解:⑴连接AC,EB,则∠CAM=∠BEM.……………1分又∠AMC=∠EMB,∴△AMC∽△EMB.∴EMMBAMMC,即AMMBEMMC.………3分(2)∵DC为⊙O的直径,∴∠DEC=90°,EC=22228(15)7.DCDE………………………4分∵OA=OB=4,M为OB的中点,∴AM=6,BM=2.…………………………………5分设EM=x,则CM=7-x.代入(1),得62(7)xx.解得x1=3,x2=4.但EM>MC,∴EM=4.…………………………………………7分(3)由(2)知,OE=EM=4.作EF⊥OB于F,则OF=MF=41OB=1.………………8分在Rt△EOF中,EF=,15142222OFOE…………………………9分∴sin∠EOB=415OEEF.……………………………………………………………10分4(1)∵PC是⊙O的直径,CD是⊙O的切线∠PAC=∠OCD=90°,显然△DOA≌△DOC···················1分∴∠DOA=∠DOC······························2分∴∠APC=∠COD······························3分APCCOD△∽△····························4分(2)由APCCOD△∽△,得APOCPCOD··················6分12xy,2yx····························7分(3)若ACD△是一个等边三角形,则6030ADCODC,·······8分于是2ODOC,可得2y,1x故,当1x时,ACD△是一个等边三角形··················10分5解:(1)BC所在直线与小圆相切,理由如下:过圆心O作OEBC,垂足为E,ABCEDOMF.中考数学圆压轴题5/9AC是小圆的切线,AB经过圆心O,OAAC,又CO平分ACBOEBC,.OEOA.BC所在直线是小圆的切线.(2)ACBDBC理由如下:连接OD.AC切小圆O于点A,BC切小圆O于点E,CECA.在RtOAD△与RtOEB△中,90OAOEODOBOADOEB,,,RtRtOADOEB△≌△(HL)EBAD.BCCEEB,BCACAD.(3)90BAC,8106ABBCAC,,.BCACAD,4ADBCAC.圆环的面积2222πππ()SODOAODOA又222ODOAAD,224π16πcmS.说明:若第(1)、(2)题中结论已证出,但在证明前未作判断的不扣分.6(1)证明:由已知DE⊥DB,⊙O是Rt△BDE的外接圆,∴BE是⊙O的直径,点O是BE的中点,连结OD,··················································································································1分∵90C,∴90DBCBDC.又∵BD为∠ABC的平分线,∴ABDDBC.∵OBOD,∴ABDODB.∴90ODBBDC,即∴90ODC····················································4分又∵OD是⊙O的半径,∴AC是⊙O的切线.·············································5分(2)解:设⊙O的半径为r,在Rt△ABC中,22222912225ABBCCA,∴15AB····························································7分∵AA,9

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功