数字温度传感器DS18B20摘要DS-18B20数字温度传感器具有耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。应用范围广泛,适用于冷冻库,粮仓,储罐,电讯机房,电力机房,电缆线槽等测温和控制领域,轴瓦,缸体,纺机,空调,等狭小空间工业设备测温和控制和汽车空调、冰箱、冷柜、以及中低温干燥箱等。一、引脚图DS18B20引脚定义:(1)DQ为数字信号输入/输出端;(2)GND为电源地;(3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)二、DS18B20的主要特性1.1、电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电1.2、DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯1.3、多个DS18B20可以并联在唯一的三线上,实现组网多点测温1.4、DS18B20在使用中不需要任何外围元件1.5、温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃1.6、可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温1.7、在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快1.8、测量结果直接输出数字温度信号,以一线总线串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力1.9、负压特性:电源极性接反时,芯片不会因发热而烧毁,但不能正常工作。三、DS18B20的外形和内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20内部结构图四、DS18B20工作原理DS18B20的温度转换时的延时时间由2s减为750ms。DS18B20测温原理如图3所示。图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图3中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。DS18B20有4个主要的数据部件:(1)光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。(2)DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。表1:DS18B20温度值格式表这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FF6FH,-55℃的数字输出为FC90H。表2:DS18B20温度数据表(3)DS18B20温度传感器的存储器DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的EEPRAM,后者存放高温度和低温度触发器TH、TL和结构寄存器。(4)配置寄存器该字节各位的意义如下:表3:配置寄存器结构TMR1R011111低五位一直都是1,TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。在DS18B20出厂时该位被设置为0,用户不要去改动。R1和R0用来设置分辨率,如下表所示:(DS18B20出厂时被设置为12位)R1R0分辨率温度最大转换时间009位93.75ms0110位187.5ms1011位375ms1112位750ms表4:温度分辨率设置表五、高速暂存存储器高速暂存存储器由9个字节组成,其分配如表5所示。当温度转换命令发布后,经转换所得的温度值以二字节补码形式存放在高速暂存存储器的第0和第1个字节。单片机可通过单线接口读到该数据,读取时低位在前,高位在后,数据格式如表1所示。对应的温度计算:当符号位S=0时,直接将二进制位转换为十进制;当S=1时,先将补码变为原码,再计算十进制值。表2是对应的一部分温度值。第九个字节是冗余检验字节。寄存器内容字节地址寄存器内容字节地址温度值低位(LSByte)0保留5温度值高位(MSByte)1保留6高温限值(TH)2保留7低温限值(TL)3CRC校验值8配置寄存器4表5:DS18B20暂存寄存器分布根据DS18B20的通讯协议,主机(单片机)控制DS18B20完成温度转换必须经过三个步骤:每一次读写之前都要对DS18B20进行复位操作,复位成功后发送一条ROM指令,最后发送RAM指令,这样才能对DS18B20进行预定的操作。复位要求主CPU将数据线下拉500微秒,然后释放,当DS18B20收到信号后等待16~60微秒左右,后发出60~240微秒的存在低脉冲,主CPU收到此信号表示复位成功。表6:ROM指令表表7:RAM指令表指令约定代码功能读ROM33H读DS1820温度传感器ROM中的编码(即64位地址)符合ROM55H发出此命令之后,接着发出64位ROM编码,访问单总线上与该编码相对应的DS1820使之作出响应,为下一步对该DS1820的读写作准备。搜索ROM0FOH用于确定挂接在同一总线上DS1820的个数和识别64位ROM地址。为操作各器件作好准备。跳过ROM0CCH忽略64位ROM地址,直接向DS1820发温度变换命令。适用于单片工作。告警搜索命令0ECH执行后只有温度超过设定值上限或下限的片子才做出响应。六、DS18B20的应用电路6.1DS18B20测温系统具有测温系统简单、测温精度高、连接方便、占用口线少等优点。6.2DS18B20的外部电源供电方式在外部电源供电方式下,DS18B20工作电源由VDD引脚接入,此时I/O线不需要强上拉,同时在总线上理论可以挂接任意多个DS18B20传感器,组成多点测温系统。注意:在外部供电的方式下,DS18B20的GND引脚不能悬空,否则不能转换温度,读取的温度总是85℃。图6:外部供电方式单点测温电路指令约定代码功能温度变换44H启动DS1820进行温度转换,12位转换时最长为750ms(9位为93.75ms)。结果存入内部9字节RAM中。读暂存器0BEH读内部RAM中9字节的内容写暂存器4EH发出向内部RAM的3、4字节写上、下限温度数据命令,紧跟该命令之后,是传送两字节的数据。复制暂存器48H将RAM中第3、4字节的内容复制到EEPROM中。重调EEPROM0B8H将EEPROM中内容恢复到RAM中的第3、4字节。读供电方式0B4H读DS1820的供电模式。寄生供电时DS1820发送“0”,外接电源供电DS1820发送“1”。外部电源供电方式是DS18B20最佳的工作方式,工作稳定可靠,抗干扰能力强,电路简单,可以开发出稳定可靠的多点温度监控系统。在外接电源方式下,可以充分发挥DS18B20宽电源电压范围的优点,即使电源电压VCC降到3V时,依然能够保证温度量精度。七、DS18B20汇编程序;**********************************FLAG1BITF0;DS18B20存在标志位DQBITP1.7TEMPER_LEQU29HTEMPER_HEQU28HA_BITEQU35HB_BITEQU36H;************ds18b20汇编程序起始********************ORG0000HAJMPMAINORG0100H;**************主程序开始************MAIN:LCALLINIT_18B20;LCALLRE_CONFIGLCALLGET_TEMPERAJMPCHANGE;**********DS18B20复位程序*****************INIT_18B20:SETBDQNOPCLRDQMOVR0,#0FBHTSR1:DJNZR0,TSR1;延时SETBDQMOVR0,#25HTSR2:JNBDQ,TSR3DJNZR0,TSR2TSR3:SETBFLAG1;置标志位,表明DS18B20存在CLRP2.0;二极管指示AJMPTSR5TSR4:CLRFLAG1LJMPTSR7TSR5:MOVR0,#06BHTSR6:DJNZR0,TSR6TSR7:SETBDQ;表明不存在RET;********************设定DS18B20暂存器设定值**************;RE_CONFIG:;JBFLAG1,RE_CONFIG1;RET;RE_CONFIG1:MOVA,#0CCH;放跳过ROM命令;LCALLWRITE_18B20;MOVA,#4EH;LCALLWRITE_18B20;写暂存器命令;MOVA,#00H;报警上限中写入00H;LCALLWRITE_18B20;MOVA,#00H;报警下限中写入00H;LCALLWRITE_18B20;MOVA,#1FH;选择九位温度分辨率;LCALLWRITE_18B20;RET;*****************读转换后的温度值****************GET_TEMPER:SETBDQLCALLINIT_18B20JBFLAG1,TSS2RET;若不存在则返回TSS2:MOVA,#0CCH;跳过ROMLCALLWRITE_18B20MOVA,#44H;发出温度转换命令LCALLWRITE_18B20LCALLDISPLAY;延时LCALLINIT_18B20MOVA,#0CCH;跳过ROMLCALLWRITE_18B20MOVA,#0BEH;发出读温度换命令LCALLWRITE_18B20LCALLREAD2_18B20;读两个字节的温度RET;***************写ds18b20汇编程序************WRITE_18B20:MOVR2,#8CLRCWR1:CLRDQMOVR3,#6DJNZR3,$RRCAMOVDQ,CMOVR3,#23DJNZR3,$SETBDQNOPDJNZR2,WR1SETBDQRET;***********读18B20程序,读出两个字节的温度*********READ2_18B20:MOVR4,#2;低位存在29H,高位存在28HMOVR1,#29HRE00:MOVR2,#8RE01:CLRCSETBCNOPNOPCLRDQNOPNOPNOPSETBDQMOVR3,#7DJNZR3,$MOVC,DQMOVR3,#23DJNZR3,$RRCADJNZR2,RE01MOV@R1,ADECR1DJNZR4,RE00RET;************读出的温度进行数据转换**************CHANGE:MOVA,29HMOVC,28H.0;将28H中的最低位移入CRRCAMOVC,28H.1RRCAMOVC,28H.2RRCAMOVC,28H.3RRCAMOV29H,A;SETBP3.0LCALLDISPLAY;调用数码管显示子程序;SETBP3.0LJMPMAIN;*******************