微分几何

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

微分几何学,数学的一个分支学科,主要是以分析方法来研究空间(微分流形)的几何性质。微分几何的产生微分几何学的产生和发展是和数学分析密切相连的。在这方面第一个做出贡献的是瑞士数学家欧拉。1736年他首先引进了平面曲线的内在坐标这一概念,即以曲线弧长这以几何量作为曲线上点的坐标,从而开始了曲线的内在几何的研究。十八世纪初,法国数学家蒙日首先把微积分应用到曲线和曲面的研究中去,并于1807年出版了它的《分析在几何学上的应用》一书,这是微分几何最早的一本著作。在这些研究中,可以看到力学、物理学与工业的日益增长的要求是促进微分几何发展的因素。1827年,高斯发表了《关于曲面的一般研究》的著作,这在微分几何的历史上有重大的意义,它的理论奠定了现代形式曲面论的基础。微分几何发展经历了150年之后,高斯抓住了微分几何中最重要的概念和带根本性的内容,建立了曲面的内在几何学。其主要思想是强调了曲面上只依赖于第一基本形式的一些性质,例如曲面上曲面的长度、两条曲线的夹角、曲面上的一区域的面积、测地线、测地线曲率和总曲率等等。他的理论奠定了近代形式曲面论的基础。1872年克莱因在德国埃尔朗根大学作就职演讲时,阐述了《埃尔朗根纲领》,用变换群对已有的几何学进行了分类。在《埃尔朗根纲领》发表后的半个世纪内,它成了几何学的指导原理,推动了几何学的发展,导致了射影微分几何、仿射微分几何、共形微分几何的建立。特别是射影微分几何起始于1878年阿尔方的学位论文,后来1906年起经以威尔辛斯基为代表的美国学派所发展,1916年起又经以富比尼为首的意大利学派所发展。随后,由于黎曼几何的发展和爱因斯坦广义相对论的建立,微分几何在黎曼几何学和广义相对论中的得到了广泛的应用,逐渐在数学中成为独具特色、应用广泛的独立学科。微分几何学的基本内容微分几何学以光滑曲线(曲面)作为研究对象,所以整个微分几何学是由曲线的弧线长、曲线上一点的切线等概念展开的。既然微分几何是研究一般曲线和一般曲面的有关性质,则平面曲线在一点的曲率和空间的曲线在一点的曲率等,就是微分几何中重要的讨论内容,而要计算曲线或曲面上每一点的曲率就要用到微分的方法。在曲面上有两条重要概念,就是曲面上的距离和角。比如,在曲面上由一点到另一点的路径是无数的,但这两点间最短的路径只有一条,叫做从一点到另一点的测地线。在微分几何里,要讨论怎样判定曲面上一条曲线是这个曲面的一条测地线,还要讨论测地线的性质等。另外,讨论曲面在每一点的曲率也是微分几何的重要内容。在微分几何中,为了讨论任意曲线上每一点邻域的性质,常常用所谓“活动标形的方法”。对任意曲线的“小范围”性质的研究,还可以用拓扑变换把这条曲线“转化”成初等曲线进行研究。在微分几何中,由于运用数学分析的理论,就可以在无限小的范围内略去高阶无穷小,一些复杂的依赖关系可以变成线性的,不均匀的过程也可以变成均匀的,这些都是微分几何特有的研究方法。近代由于对高维空间的微分几何和对曲线、曲面整体性质的研究,使微分几何学同黎曼几何、拓扑学、变分学、李群代数等有了密切的关系,这些数学部门和微分几何互相渗透,已成为现代数学的中心问题之一。微分几何在力学和一些工程技术问题方面有广泛的应用,比如,在弹性薄壳结构方面,在机械的齿轮啮合理论应用方面,都充分应用了微分几何学的理论。黎曼几何学的提出在三维欧氏空间E3中,与曲线相比,曲面有着重要得多的性质。设x1,x2,x3为E3的笛氏坐标,则曲面S的参数方程为(1)曲面S的几何性质完全由被称为曲面的第一、第二基本形式的两个二次微分形式所决定。1827年德国数学家C.F.高斯的论文《弯曲曲面的一般研究》在微分几何学的历史上有重大的意义。微分几何发展经历了150年之后,高斯抓住了微分几何中最重要的概念和带有根本性的内容,他在论文中建立了曲面的内在几何学,其主要思想是强调了曲面上只依赖于第一基本形式的一些性质,例如曲面上曲线的长度、两条曲线的夹角、曲面上一区域的面积、测地线、测地曲率和总曲率等等,称之为曲面的内在性质。高斯之前的几何学家,在研究曲面时总是把曲面与外围空间E3相联系,找出曲面上一点的主方向,再计算两曲率线的法曲率的乘积,这是欧拉的研究。高斯证明了由曲面的第一基本形式就确定了曲面的总曲率,这就是高斯方程,所以总曲率通常也称为高斯曲率,这是高斯的著名发现,被称为“极妙定理”。他说:“如果一个弯曲的曲面可展开到任何另外的曲面上去,则每点的曲率是保持不变的。”这里,“可展”表示了映射是1-1(一一)且保持距离的。高斯建立的内在几何学有着深远的影响,是在微分几何上的一关键而重大的突破,但当时并未被人们所认识。更重要的发展属于德国数学家(G.F.)B.黎曼。1854年他在格丁根大学发表了题为《论作为几何学基础的假设》的就职演讲,黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧氏空间中的一个几何实体。他发展了空间的概念,首先提出了n维流形(当时称为多重广延量)的概念,其中的点用n个实数(x1,x2,…,xn)作为坐标来描述,他定义了流形上无限邻近两点(xi)与(xi+dxi)(i=1,2,…,n)的距离,(2)并以此作为几何学的出发点。后来称(2)为黎曼度量,这里(gij)是正定对称阵。黎曼认识到度量(2)是加到流形上去的一个结构,因此,同一流形可以有众多的黎曼度量。黎曼以前的几何学家只知道外围空间E3的度量赋予曲面S以诱导度量,(3)即第一基本形式,而并未认识到曲面S还可以独立于E3而定义,可以独立地赋予度量结构。黎曼意识到这件事是非凡的重要,他把诱导度量与独立的黎曼度量两者分开来,从而开创了以(2)为出发点的黎曼几何。这种几何以种种非欧几何作为其特例。例如,这时可以把(α是常数)(4)作为两个无限邻近点的距离,当α0时,就是球面几何或椭圆几何(又称为正常曲率空间的几何),α=0时就是欧氏几何,α0时就是罗巴切夫斯基几何或双曲几何,又称负常曲率空间的几何。黎曼几何中的一个基本问题是微分形式的等价性问题。在两个不同坐标系x1,x2,…,xn与x1',x2',…,xn'中,给定两个二次微分形式与,求存在坐标变换(i=1,2,…,n)将一个微分形式变到另一个的条件,这个问题1869年由E.B.克里斯托费尔与R.(O.S.)李普希茨解决。克里斯托费尔的解包含了以他的名字定名的记号,即第一类克里斯托费尔记号[jk,l]和第二类克里斯托费尔记号[]:,(5)及协变微分的概念。在此基础上,1887~1896年间G.里奇发展了张量分析方法,这在广义相对论中起了基本的作用。里奇和他的学生T.列维-齐维塔在研究报告《绝对微分法及其应用》(1901)中对里奇计算法作了详细的综述。《埃尔朗根纲领》对微分几何的影响比克里斯托费尔、李普希茨解决二次微分形式的相互转换问题稍迟一些,1872年(C.)F.克莱因在德国埃尔朗根大学作就职演讲时,阐述了《埃尔朗根纲领》,这就是把几何学定义为研究变换群所作用的空间,例如欧氏空间具有刚体运动群,所研究的对象是在刚体运动群下不变的性质。射影空间具有射影变换群,仿射空间与共形空间分别具有仿射变换群与共形变换群等等。这样就用变换群对已有的几何学进行了分类。这些几何学中所研究的对象是在相应变换群下不变的性质。这种用群论统一几何学的思想把几何学与李群结合起来了。在《埃尔朗根纲领》发表后的半个世纪内,它成了几何学的指导原理,推动了几何学的发展,导致了射影微分几何、仿射微分几何、共形微分几何的建立。特别是射影微分几何起始于1878年阿尔方的学位论文,后来1906年起为E.J.威尔辛斯基为代表的美国学派所发展,1916年起为以G.富比尼为首的意大利学派所发展。20世纪30年代起中国苏步青及其学生们以及苏联С.∏.菲尼科夫等进一步发展了射影微分几何。另一方面,克莱因的《埃尔朗根纲领》与狭义相对论完美地相配合,狭义相对论中的一个原理是洛伦茨群下场方程的不变性,这导致了克莱因成为狭义相对论的最早支持者之一。洛伦茨结构在相对论中起了基本的作用。当克莱因制定《埃尔朗根纲领》时,已观察到黎曼几何并不包括在内,因为一般的黎曼空间,除恒等变换外,并不含有其他等长变换。经过W.K.J.基灵,é.(-J.)嘉当的努力,使得李群成为微分几何的有力工具,而李群本身也成为微分几何的研究对象,它的推广就是齐性流形即容有可迁变换群的微分流形,这就给出了埃尔朗根纲领中所设想的几何空间的最一般形式。在齐性流形中,具有正定黎曼度量的齐性黎曼流形,特别是对称空间,显得特别重要。广义相对论的产生及其对几何学的影响黎曼几何的建立对近代物理学产生了巨大的影响。黎曼对引力论很有兴趣,曾对牛顿的引力论发生怀疑,牛顿的引力是一种超距作用,而黎曼认为引力作用应通过接触来传递,但他并没有把黎曼几何用于引力论。50年后,爱因斯坦创立了新的引力理论──广义相对论,黎曼几何(严格地说是洛伦茨几何,这时(2)中所定义的ds2是非正定的二次微分形式)及其运算方法(里奇计算法)成为广义相对论有效的数学工具。爱因斯坦引进了约定求和这一很有用的符号。广义相对论的产生对微分几何的影响是令人震动的。当时黎曼几何成为研究的中心课题,斯考顿、列维-齐维塔、É.嘉当及艾森哈特等人的关于黎曼几何的权威著作几乎都出现在1924~1926年期间。爱因斯坦在狭义相对论中,把时间与空间作为相关的量一起来考虑,构成了一个四重广延量,这显示了时空概念的一个根本性变化。这时,时空中两点(xi),(xi+dxi)(i=1,2,3,4)的距离由非正定的二次形式(6)所描述,其中x4=сt,с是光速,t是时间。这种具体形式是闵科夫斯基空间,或称闵科夫斯基四维时空,简称四维时空,它是洛伦茨流形中的一个特例。广义相对论采用的是洛伦茨流形,这时ds2是非正定的,它的特点是在任何一点的小邻域中和闵科夫斯基时空性质相近似。引力论的基本问题是要说明质点在引力作用下的运动轨线问题,在广义相对论中运动轨线为流形上类时(即“弧长”平方为负)的测地线,类时意味着质点的速度低于光速,测地线是变分(7)所得微分方程的解。爱因斯坦的引力场方程是一个关于gij的二阶偏微分方程(8)式中Rij称为里奇张量,是由gij的一、二阶导数构成的;,其中由所确定;Tij是描述物质分布的能量动量张量。特别,真空中的引力场方程由Rij=0所表述。如果弯曲空间化为平直空间,则表示引力场不存在,这时质点作匀速运动。爱因斯坦的广义相对论的思想来自物理学的研究,但值得注意的是从欧几里得几何学到黎曼几何学经历了二千多年时间,而从闵科夫斯基时空到洛伦茨流形只经过十年时间,这是因为黎曼几何学的张量分析已为此作了一切数学上的准备。爱因斯坦在建立广义相对论的过程中得益于数学家M.格罗斯曼,在发展广义相对论过程中他和é.嘉当进行了许多的讨论,D.希尔伯特也参加建立场方程的研究。把黎曼几何应用于广义相对论时,列维-齐维塔平行移动的概念具有相当的重要性。(C.H.)H.外尔在1918年的名著《时间,空间,物质》中引进了仿射联络的概念,它是黎曼流形中列维-齐维塔平行移动的推广。在流形上可以用仿射联络作为出发点来定义平行移动和协变微分等结构,这样,仿射联络就不必从黎曼结构来得出。外尔所给出的联络是无挠率的(即对称的)。流形上定义了仿射联络,就得到仿射联络流形。é.嘉当在他的主要论文《仿射联络流形及广义相对论理论》(1923~1924)中给出仿射联络的权威性论述,并将仿射联络这一概念推广到有挠率的情况。文中主要说明为什么爱因斯坦引力论是牛顿引力论的推广,后来他更进一步建立了各种联络理论,例如射影联络、共形联络等。黎曼几何还有另外的推广,P.芬斯勒以一般的出发建立了一种度量的几何学,F只是dxj的正齐二次函数而不必要求它为二次型,也就是说gij除依赖于x之外,还是dx的正齐0次函数。对这种空间也引进了联络、曲率等等概念,从而得到芬斯勒几何。随后,还有很多的推广,得到的空间通称为一般空间。曲线和曲面的整体性质在古典的曲线论和曲面论中,人们所研究的问题已可分为两种类型:局部问题与整体问题。曲线或曲面在一点充

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功