结构失稳和整体稳定性分析失稳破坏是一种突然破坏,人们没有办法发觉及采取补救措施,所以其导致的结果往往比较严重。正因为此,在实际工程中不允许结构发生失稳破坏。导致结构失稳破坏的原因是薄膜应力,也就是轴向力或面内力。所以在壳体结构、细长柱等结构体系中具有发生失稳破坏的因素和可能性。这也就是为什么在网壳结构的设计过程中稳定性分析如此被重视的原因。下面根据本人多年来的研究及工程计算经验,谈谈个人对整体稳定性分析的一点看法,也算做一个小结。1稳定性分析的层次在对某个结构进行稳定性分析,实际上应该包括两个层次。(一)是单根构件的稳定性分析。比如一根柱子、网壳结构的一根杆件、一个格构柱(桅杆)等。单根构件的稳定通常可以根据规范提供的公式进行设计。不过对于由多根构件组成的格构柱等子结构,还是需要做试验及有限元分析。(二)是整个结构的稳定分析。比如整个网壳结构、混凝土壳结构等结构整体的稳定性分析。整体稳定性分析目前只能根据有限元计算来实现。2整体稳定性分析的内容通常,稳定性分析包括两个部分:Buckling分析和非线性“荷载-位移”全过程跟踪分析。(1)Buckling分析Buckling分析是一种理论解,是从纯理论的角度衡量一个理想结构的稳定承载力及对应的失稳模态。目前几乎所有的有限元软件都可以实现这个功能。Buckling分析不需要复杂的计算过程,所以比较省时省力,可以在理论上对结构的稳定承载力进行初期的预测。但是由于Buckling分析得到的是非保守结果,偏于不安全,所以一般不能直接应用于实际工程。但是Buckling又是整体稳定性分析中不可缺少的一步,因为一方面Buckling可以初步预测结构的稳定承载力,为后期非线性稳定分析施加的荷载提供依据;另一方面Buckling分析可以得到结构的屈曲模态,为后期非线性稳定分析提供结构初始几何缺陷分布。另外本人认为通过Buckling分析还可以进一步校核单根构件截面设计的合理性。通过Buckling分析得到的屈曲模态,我们可以看出结构可能发生的失稳破坏是整体屈曲还是局部屈曲。如果是局部屈曲,那么为什么会发生局部屈曲?局部屈曲的荷载因子是否可以接受?是否是由于局部杆件截面设计不合理所导致?这些问题希望能引起大家的注意。(2)非线性稳定分析前文已经讲过,Buckling分析是一种理论解。但是由于加工误差、安装误差、温度应力、焊接应力等因素的存在,现实中的结构多少都会存在一些初始缺陷,其稳定承载力与理论解肯定存在一定的差别。另外,由于Buckling分析是线性的,所以它不可以考虑构件的材料非线性,所以如果在发生屈曲之前部分构件进入塑性状态,那么Buckling也是无法模拟的。所以必须利用非线性有限元理论对结构进行考虑初始几何缺陷、材料弹塑性等实际因素的稳定性分析。目前应用较多的是利用弧长法对结构进行“荷载-位移”全过程跟踪技术,来达到计算结构整体稳定承载力的目的。由于弧长法属于一种非线性求解方法,而且在非线性稳定分析中通常需要考虑几何非线性、材料非线性及弹塑性,所以通常需要求助于通用有限元软件。比如ANSYS、ABAQUS、NASTRAN、ADINA等。而设计软件,比如PKPM、SAP2000、MIDAS等通常不具备这种功能,或者具备功能而比较难得到满意的结果。在这些通用有限元软件中,可以较好的计算结构的屈曲前、屈曲后性能。通常通过“荷载-位移”曲线来判断计算结果的合理性及结构的极限稳定承载力。通过有限元软件不但可以较好的对结构进行非线性稳定分析,同时还可以考虑初始几何缺陷、材料非线性、材料弹塑性等问题。基本上可以实现对结构的真实模拟分析。3整体稳定性分析的关键问题结构的整体稳定性分析是很长时间以来一直备受关注的课题,而且在今后很长一段时间内仍将是热门研究对象。这是因为结构整体稳定承载力的影响因素很多,比如初始几何缺陷、焊接应力、材料非线性、荷载形式等。所以很多问题需要大家深入考虑:(1)结构是否存在稳定性问题。我觉得这非常重要,因为通常情况下只要用户给一个模型,软件都会算出一个稳定系数。但是实际上结构不一定存在失稳问题,可能很显然地是属于强度破坏问题。所以,前期的判断很重要,不要把时间和精力浪费在没有意义的事情上。(2)结构的非线性。在整体稳定性分析中可能涉及三种非线性,分别为几何非线性、材料非线性、边界非线性。其中几何非线性是必须要考虑的;如果要真实的考虑结构的材料行为还必须考虑材料的非线性问题,也就是材料的应力-应变关系。对于一些特殊问题,比如结构某些支承点有可滑动能力,那么还必须考虑边界非线性,这样的话问题就更为复杂。(3)初始几何缺陷。由于加工制造、施工安装、运输等原因,实际结构与最初的计算模型肯定有一些差别。所以在计算时通常对计算模型施加一定的初始几何缺陷,来考虑几何误差对结构稳定承载力产生的影响。实际工程中几何缺陷的分布与大小应该是与加工厂家、施工单位有关的,应该一种“已知”的“随机分布”。之所以说是已知的,是因为实际上某一个固定单位的加工、施工误差肯定存在一定的规律,只是我们没有去深入研究它。比如一个固定机器的制作误差是可以通过大量测试数据来分析的。而它又是“随机分布”的,因为对于整个大结构而言,每个节点的几何误差应该是有一定随机分布的特征。不过,在国内的做法是“一致模态法”,就是按照Buckling分析的第一阶屈曲模态来进行初始几何缺陷的施加,而最大缺陷大小则按照《网壳技术规程》规定的数值(原来是跨度的1/300,不知新规范是否有更改)。这种方法在理论上是一种保守方法,因为按照第一阶屈曲模态施加的初始几何缺陷是最不利的。但是原规范规定的最大缺陷值(L/300)一直存在争议,因为在现有技术条件下有时候偏大很多。希望国内的制造、施工单位能对自己公司的产品进行统计分析,为更好地预测结构的初始几何缺陷提供技术支持。(4)材料的弹塑性。Buckling是一种线弹性分析方法,它预测结构稳定承载力的前提是假定结构处于线弹性状态。但是把使用荷载的几倍、十几倍甚至几十倍施加于结构上,很可能部分构件已经进入了塑性。所以,最佳方法是在进行非线性稳定分析过程中考虑材料的弹塑性行为,否则可能会得到非保守的结果。(5)稳定系数的控制。计算得到结构的整体稳定荷载系数后,问题便集中在荷载系数K的控制上。按照《网壳结构技术规程》给出的建议值,K取5.0。但是在实际应用中发现很多工程是算不到5.0的。这有两方面的问题,一是计算采用的荷载是什么?设计中我们有很多荷载组合(一般采用标准组合),不同的荷载组合计算得到的K肯定是不同的,所以可能采用某些组合是可以满足要求的,而另外一些则不满足要求;二是5.0的限值或许有点大。因为通常5.0的荷载作用下结构部分构件已经进入了塑性,也意味着结构可能已经发生了强度破坏,所以稳定系数已经失去意义。(6)对计算结果的判断。在一些资料和论文上经常看到“荷载-位移”曲线为一段上升的曲线,但是曲线又处于明显的上升阶段。所以通过曲线让人无法判断计算结果是否达到了结构的稳定承载力。其实目前有限元的计算方法是对模型施加一定的荷载,然后让软件去算,到计算不收敛时,即认为荷载加到了结构的稳定承载力。但是存在这样一个问题:模型达到稳定承载力是不收敛的,但是并不是结构不收敛都是因为达到了结构的稳定承载力。也可能是由于数值不收敛、用户计算参数设置有问题等等原因。所以对计算结果进行合理的判断非常重要。不要算出一条曲线就说是达到了结构的稳定承载力,是不科学的。最好的结果是能够算出下降段,可以明显地找到最大荷载因子。不过,有时候很困难,需要用户掌握较深的非线性分析理论及具备较多的计算经验。