现代心理与教育统计学整理版复习版名词解释

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1参数估计:指对参数模型下的估计。2统计误差:误差是测得值与真值之间的差值,统计误差归纳起来可分为两类:测量误差与抽样误差。3抽样分布:是从同一总体内抽取的不同样本的统计量的概率分布。4二项分布:是指试验仅有两种不同性质结果的概率分布。5区间估计:以样本统计量的抽样分布(概率分布)为理论依据,按一定概率的要求,由样本统计量的值估计总体参数值的所在范围,称为总体参数的区间估计。6无偏估计:如果一切可能个样本统计量的值与总体参数值偏差的平均值为0,这种统计量就是总体参数的无偏估计量。7标准误:标准偏差反映的是个体观察值的变异,标准误反映的是样本均数之间的变异,标准误不是标准差,是样本平均数的标准差。8符号检验:是以正负符号作为资料的一种非参数检验程序。适用于检验两个配对样本分布的差异。9符号等级检验(符号秩和检验):是比符号检验法精确度高一些的另一种非参数检验方法⑴.小样本情况当样本容量n≤25时,用查表法进行符号等级检验:①.提出假设:H0:P(X1>X2)=P(X1<X2)②.求差数的绝对值③.编秩次(赋予每一对数据差数的绝对值等级数)。④.添符号(给每一对数据差数的等级分数添符号)⑤.求等级和(分正、负求等级和,将小的记为T)⑥.查符号等级检验表,做出统计决断。⑵.大样本情况(n>25)当样本容量n25时,二项分布接近于正态分布。10秩和检验:是通过数字大小依次排列秩次,求秩次之和来进行假设检验的方法。11方差分析:方差分析作为一种统计方法,是把实验数据的总变异分解为若干个不同来源的分量。因而它所依据的基本原理是变异的可加性。12等级方差分析:在进行非参数的方差分析时,针对不同的设计也有不同的方法,而大多数都需要将原始数据转换成等级,因此非参数方差分析又统称等级方差分析。13非参数检验:是一类基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数”检验。14主效应:一个因素的水平之间的平均数差异,称为该因素的主效应。15简单效应:指一个因素在另一个因素不同水平上的效应。16显著性水平:是指估计总体参数落在某一区间时,可能犯错误的概率。17交互作用:一个实验中有两个或两个以上的自变量,当一个自变量的效果在另一个自变量的每一个水平上不一样时,我们就说存在着自变量的交互作用。18组间变异:指由于接受不同的实验处理而造成的各组之间的变异,可以用两个平均数之间的离差表示。19组间设计:又称为被试间设计或独立组设计,就是把数目相同的被试分配到自变量的不同水平或不同的自变量上。20随机区组设计:种设计的特点是根据“局部控制”的原则,将试验地按肥力程度划分为等于重复次数的区组,一区组安排一重复,区组内各处理都独立的随机排列。这是随机排列设计中最常用而最基本的设计。21四分位差:也可视为百分差的一种,通常用符号Q来表示,指在一个次数分配中,中间的50%的次数的距离的一半。在一组数据中,值等于P25到P75距离的二分之一。这个差异量数能够反映出数据分布中中间50%数据的散步情况22百分位数:它只量尺上的一个点,在此点一下,包括数据分布中全部数据个数的一定百分比。第P百分位数就是指在其值为P的数据以下,包括数据中全部数据的百分之p,由于以全距表示一组数据的离散程度时,受极端数的影响不是很准确,因此,取消分布两端10%的数据,即用P10%和P90%之间的距离作为差异量数,即百分位差。23标准分数:又称基分数或z分数,是以标准差为单位表示一个原始分数在团体中所处位置的相对位置量数24假设检验:在统计学中不能对H1的真实性直接检验,需要建立与之对立的假设,称作虚无假设,或叫无差假设,零假设,记作H0.在假设检验中H0总是作为直接被检验的假设,而H1与H0对立,二者择一,因而H1有时又叫做对立假设或备择假设。25两类错误:虚无假设H0本来是正确的,但是拒绝了H0,这类错误成为弃真错误,即I型错误。虚无假设本来不是正确的但却接受了H0,这类型错误成为取伪错误,即II类型错误。26统计量:统计量是从一个样本中计算出来的一些量数,他可以描述一组数据的情况。27虚无假设:虚无假设常常是根据历史资料,或根据周密考虑后确定的,若没有充分依据,虚无假设不能被轻易否定的。28X2检验:对心理和教育研究中收集到的计数数据进行统计分析,一般应用属性统计方法,因为这类数据时按照事物属性进行多项分类的。另外,对这些计数数据分析是根据X2分布,故称这类统计分析方法为X2检验29.描述统计:主要研究如何整理心理与教育科学实验或调查得来的大量数据,描述一组数据的全貌,表达一件失误的性质30.推论统计:主要研究如何通过局部数据所提供的信息,推论总体的情形。31.单侧检验:强调某一方向的检验叫做单侧检验32.双侧检验:只强调差异而不强调方向性的检验称为双侧检验33.参数:总体的那些特性称为参数。又称为丛悌参数,是描述一个总体情况的统计指标。34.统计检验力:其他条件不变的情况下,u1与u0的距离改变,引起1-β的改变,所以称1-β为统计检验力35.F分布:设有两个正太分布的总体,其平均数与方差分别为,及,从这两个总体分别随机抽取容量及的样本每个样本都可计算出值,这样可以得到无限多个与,每个随机变量各除以对应的自由度d与d之比,称为F比率。这无限多个F的分布称为F分布36.品质相关:是表示R*C(行*列)表的两个变量之间的关联程度37.集中量数:数据的集中趋势就是数据分布中大量数据向某方向集中的程度用来描述这一数据特点的统计量称为集中量数1.标准分数标准分数又叫基分数或Z分数,是以标准数为单位,反应一个原始数在团体中所处的位置的量数。2.随机现象随机现象是指事先不能断言出现那种结果的现象。3.差异量数差异量数是描述数据离散趋势的统计量。4.相关关系相关关系是事物间存在联系但又不能直接做出因果关系解释时的事物间的关系。简答题1.简述简单次数分布表的编制步骤1)、求全距:2)、定组数;3)、定组距4)、写组限5)求组中值6)归类划记7)登记次数。2.简述假设检验的一般步骤。1)建立原假设和备择假设。2)在原假设成立的前提下,选择合适统计量的抽样分布,计算统计量的值,常用的有Z分布、T分布、F分布。3)选定显著性水平,查相应分布表确定临界值,从而确定原假设的拒绝区间和接受区间。4)对原假设做出判断和解释,如果统计量值大于临界值,拒绝原假设。反之,则接受原假设。3.简述方差分析的基本条件。1)总体正态分布2)变异可加性3)各处理的方差一致《教育与心理统计学》1.简述条图、直方图、圆形图(饼图)、线图以及散点图的用途答:这几种图是统计学中最常用的图形,条图和直方图都用于表示变量各取值结果的次数或相对次数,即次数分布图。不同的是前者用于离散或分类变量,后者用于连续变量(分组后)。圆形图用于表示离散变量的相对次数,即频率,整个圆面积为1,各扇形块表示各类别的频率。线图用于表示连续变量在某个分类变量各水平上的均值,如各年级的考试成绩均分,常用于组间比较中。散点图用于两连续变量的相关分析,可将两变量成对数据的值作为横、纵坐标标于图上,根据散点的形状可以大致判断两变量是否存在相关以及相关的程度。2.简述正态分布的主要应用答:正态分布的应用主要牵涉到通过查标准正态分布表进行Z分数和概率之间的转换。其主要应用可以分为已知录取率求解分数线问题及其反问题,即已知原始分数或根据特定界限求解录取率或考生人数。分数线问题主要是根据录取率确定合适的查表概率(中央概率),查得Z分数并转换为原始分数;后者则主要是通过将原始分数或界限标准化,查表得到概率然后求解录取率或考生人数。此外,这种关系在测量中等级分数或难度的等距化、测验分数的标准化等程序中也有应用。3.简述T检验和方差分析法在进行组间比较上的区别和联系答:T检验和方差分析法的共同点是:它们都是推断统计的主要方法,都可以用于检验组间差异,即通过比较自变量(性质变量)的各水平在因变量上的差异对自变量的效应进行判断。它们的区别是:T检验主要是基于T分布理论,只能用于检验两组之间的差异,即其分析的自变量只能有两个水平;而方差分析则主要用于多组比较。另一方面,T检验还可以对单个总体参数的显著性进行检验,而方差分析法作为一般线性模型,可以同时处理多个自变量在多个因变量上的效应检验问题。4.简述Z分数的应用答:Z分数的应用主要有:①表示各原始数据在数据组中的相对位置;②对于正态数据,可表示该数据以下或以上数据的比例,具体说可以求解诸如分数线问题或人数比例问题;③表示标准化测验的分数;④用于异常值的取舍。5.简述卡方配合度检验和卡方独立性检验的区别答:卡方配合度检验主要用于检验单个名义型变量多个分类上的实计数和某个理论次数分布(如均匀分布)之间的差异显著性,因此可以将之理解成多组之间次数比较的方法;卡方独立性检验主要用于检验两个名义型变量各项分类上的次数之间是否存在显著关联,是考察名义型变量间相关性的方法。6.简述方差分析法的步骤答:方差分析法的步骤是:①和一般的假设检验一样设立零假设和研究假设;②根据实验设计的类型确定各变异源,进行相应的平方和分解,即有几个变异源就从总平方和中分解出几个平方和;③根据平方和分解得到各变异源对应的自由度,即进行总自由度的分解;④根据研究的目的和实验设计考虑要检验什么效应,从而将其对应的平方和比上相应的自由度得到该效应的均方,其中误差均方必须计算;⑤将各待检验效应的均方比上误差的均方,构造各F统计量;⑥将计算来的各F统计量值和F检验的临界值进行比较得出统计结论,其中临界值的分子自由度和分母自由度分别是待检验效应的自由度和误差自由度;⑦(可不答)如果效应检验结果显著,可以进入事后检验,即对多水平的自变量进行多重比较考察各水平间的具体差异,如果是多因素方差分析,交互作用效应检验显著,也可以进入简单效应检验具体考察交互作用的情况。7.简述方差和差异系数在反映数据离散程度上的区别和联系答:方差反映了数据的变异或离散程度,即数据偏离平均数的程度,方差越大表示数据离散程度越大;而差异系数则反映了该组数据以平均数为单位的离散程度。它们的区别主要是方差一般不能直接用于两组数据间相对离散程度的比较,尤其是当两组数据的水平差异较大时。但特殊情况下如果数据的水平相当,且是同质数据,则可以直接由方差看出两组数据相对离散程度,这时它和差异系数的功用相同。8.简述回归分析法最小二乘法的思路答:回归分析法的目的是建立因变量的期望值和自变量之间的函数关系式,称为回归模型,最小二乘法认为,这样的回归模型应当使模型中的期望值和实际观测数据之间的误差达到最小,最小二乘就是指所有的误差项平方和达到最小。然后再通过求解达到该最小值时的未知参数得到函数关系式。这就是最小二乘法的基本原理。9.简述完全随机化设计和随机区组设计进行方差分析的区别答:两种设计方差分析的区别主要在于总平方和分解不同,不同的设计实际上对应了研究者对实验中可能对因变量产生效应的各变量的不同考虑,因此方差分析时的变异源也当然不同,所以总平方和分析出来不一样,如随机化设计只分解出组间和组内两部分,把组内当成误差,而区组设计则还要在组内部分中分解出区组变异和残差变异。平方和分解变了,当然后面对应的自由度分解,均方的计算和F统计量的构造数量都有所不同。10.简述假设检验中两类错误的区别和联系答:假设检验中的两类错误指α型错误和β型错误,前者又称为弃真错误,指当零假设为真时错误地拒绝了它,因此其大小等于事先设置的显著型水平,即0.05或0.01;后者又称为取伪错误,指当零假设为假时错误地接受了它。二者性质不同,前提条件不同,这是它们的区别。两类错误的联系是:它们都是在做假设检验的统计决策时可能犯的错误,决策者同时面临犯两种错误的风险,因此都极力想避免或者减少它们,但由于在总体间真实差异不变情况下,它们之间是一种此消彼长的关系,因此,不可能同时减小两种错误的发生可能,常用的办法是固定α的情况下尽可能减小β,比如

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功