2013数字图像处理.

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

图像处理练习题一、简答题:1.图像锐化与图像平滑有何区别与联系?答:图象锐化是用于增强边缘,导致高频分量增强,会使图象清晰;图象平滑用于去噪,对图象高频分量即图象边缘会有影响。都属于图象增强,改善图象效果。2.频域空间的增强方法对应的三个步骤:(平滑与锐化)答:假定原图像为f(x,y),经傅立叶变换为F(u,v),输出图像为g(x,y),则频率域锐化过程描述为:(1)将图像f(x,y)从图像空间转换到频域空间,得到F(u,v);(2)在频域空间中通过不同的??滤波函数H(u,v)对图像进行不同的增强,得到G(u,v)(3)将增强后的图像再从频域空间转换到图像空间,得到图像g(x,y)。(平滑—低通滤波器,锐化—高通滤波器)3.图像数据压缩的必要性答:(1)数字图像的庞大数据对计算机的处理速度、存储容量都提出过高的要求。因此必须把数据量压缩。(2)从传送图像的角度来看,则更要求数据量压缩。在信道带宽、通信链路容量一定的前提下,采用编码压缩技术,减少传输数据量,是提高通信速度的重要手段。4.图像锐化滤波的常用方法?答:○1以梯度值代替原来像素值;○2给定一个阈值,若梯度值小于这个阈值,则修改这个像素的灰度值,反之则保持不变;○3给图像背景赋予一个固定的灰度值;○4给图像前景赋予一个固定的灰度值;○5通过一个阈值,给图像的前景和背景分别赋予不同的固定的灰度值。5、图像滤波的主要目的是什么?主要方法有哪些?6、图像噪声有哪些主要类型,主要特点是什么?7、如何理解中值滤波的不变性?8、什么是梯度倒数加权法平滑?9、什么是Laplacian算子?它有哪些特征?10、罗伯特梯度与Sobel梯度有什么区别?11、根据像素的梯度值生成不同的梯度图像的方法有哪些?12、定向检测的模板有哪些?13、频率域滤波的主要滤波器有哪些?各有什么特点?14、同态滤波的基本操作有哪些?15、Canny边缘检测器傅立叶变换??滤波器傅立叶反变换),(vuH),(vuF),(vuG),(yxg),(yxf16、二、简答题1.图像滤波可以从图像中提取空间尺度信息,突出图像的空间信息,压抑其它无关的信息,或者去除图像的某些信息,恢复其它的信息。因此,图像滤波也是一种图像增强方法。图像滤波可分为空间域滤波和频率域滤波两种方法。空间域滤波通过窗口或卷积核进行,它参照相邻像素来单个像素的灰度值,这是当前主要的滤波方法。频率域滤波是对图像进行傅立叶变换,然后对变换后的频率域图像中的频谱进行滤波。2.图像噪声按其产生的原因可分为外部噪声和内部噪声。外部噪声是指图像处理系统外部产生的噪声,如天体放电干扰、电磁波从电源线窜入系统等产生的噪声。内部噪声是指系统内部产生的噪声。从统计理论观点可分为平稳和非平稳噪声。凡是统计特征不随时间变化的噪声称为平稳噪声;统计特征随时间变化的噪声称为非平稳噪声。从噪声幅度分布形态可分为高斯型、瑞利型噪声。还有按频谱分布形状进行分类的,如均匀分布的噪声称为白噪声。按产生过程进行分类噪声可分为量化噪声和椒盐噪声等。3.对于一维的某些特定的输入信号,中值滤波的输出保持输入信号值不变。例如输入信号为在2n+1内单调增加或单调减少的序列。对于二维信号,中值滤波不变性要复杂得多,不仅与输入信号有关,还与窗口的形状有关。图7.7列出了几种二维中值滤波窗口及与之对应的最小尺寸的不变输入图形。一般地,与窗口对角线垂直的边缘经滤波后将保持不变。利用这个特点,可以使中值滤波既能去除图像中的噪声,又能保持图像中一些边缘信息。从经验来看,方形或圆形的窗口适宜于地物轮廓较长的图像,十字窗口适宜于有尖角物体的图像。一维的周期性二值序列,如{xn}=…,+1,+1,-1,-1,+1,+1,-1,-1,…,当滤波窗口长度为9时,经过中值滤波此序列将保持不变。对于一个二维序列,这一类不变性更为复杂,但它们一般也是二值的周期性结构,即周期性网格结构的图像。4.梯度倒数加权法平滑源于这样的考虑:在离散图像内部相邻区域的变化大于区域内部的变化,在同一区域中中间像素的变化小于边沿像素的变化。梯度值正比于邻近像素灰度级差值,即在图像变化缓慢区域,梯度值小,反之则大。取梯度倒数,该倒数之大小正好与梯度相反,以梯度倒数作权重因子,则区域内部的邻点权重就大于边沿或区域外的邻点。也就是说,这种平滑其贡献重要来自区域内部的像素,平滑后的图像边沿和细节不会受到明显损害。5.Laplacian算子是线性二阶微分算子,即取某像素的上下左右四个相邻像素的值相加的和减去该像素的四倍,作为该像素新的灰度值。梯度运算检测了图像的空间灰度变化率,因此,图像上只要有灰度变化就有变化率。Laplacian算子检测的是变化率的变化率,是二阶微分。在图像上灰度均匀和变化均匀的部分,根据Laplacian算子计算出的值0。因此,它不检测均匀的灰度变化,产生的图像更加突出灰度值突变的部分。与梯度算子不同,拉普拉斯算子是各向同性的。拉普拉斯锐化效果容易受图像中的噪声的影响。因此,在实际应用中,经常先进行平滑滤波,然后才进行拉普拉斯锐化。考虑到各向同性的性质和平滑的特点,常选择高斯函数作为平滑滤波核(即先进行高斯低通滤波)。6.(1)罗伯特(Roberts)梯度采用交叉差分的方法。用模板表示为:Roberts梯度相当于在图像上开一个2×2的窗口,用模板h1计算后取绝对值再加上模板h2计算后取绝对值。将计算值作为中心像素(x,y)的梯度值,如下所示。这种算法的意义在于用交叉的方法检测出像素与其在上下之间或左右之间或斜方向之间的差异。采用Roberts梯度对图像中的每一个像素计算其梯度值,最终产生一个梯度图像,达到突出边缘的目的。(2)Sobel梯度是在Prewitt算法的基础上,对4-邻域采用加权方法进行差分,因而对边缘的检测更加精确,常用的模板如下:在上面的Prewitt和Sobel模板中,h1主要对水平方向的地物进行锐化,h2则主要对垂直方向的地物进行锐化。在应用中要注意的是,模板对于含有大量噪声的图像是不适用的。与Roberts梯度相比,Sobel算法较多地考虑了邻域点的关系,扩大了模板,从2×2扩大到3×3来进行差分7.(1)以各像素点的梯度值代替其原灰度值,用此方法得到的图像完全失去了原图像的面目而成为一幅边缘图像,梯度值大的边缘轮廓被突出显示,而灰度变化比较平缓或均匀的区域则几乎是黑色。由于图像包含大量信息,像素的灰度值差异普遍存在,为了在突出主要边缘信息的同时保留图像背景,设定一个非负阈值T进行处理。(2)适当选取T,使梯度值≥T的各点的灰度等于该点的梯度值,其它则保留原灰度值,形成背景,(3)根据需要指定一个灰度级LG,例如,令LG=255。以LG表示边缘,其它保留原背景值,(4)指定一个灰度级LB表示背景,例如,令LB=0,形成黑背景,保留边缘梯度变化。(5)将边缘与灰度图像分别以灰度级LG和LB表示,例如,255表示边缘,0表示背景,形成二值图像8.(1)检测垂直线\(2)检测水平线(3)检测对角线9.(1)理想滤波器包括理想低通滤波器、理想高通滤波器,用理想低通滤波器处理后会导致边缘损失、图像边缘模糊。理想高通滤波器处理的图像中边缘有抖动现象。(2)Butterworth滤波器包括Butterworth低通滤波器、Butterworth高通滤波器,Butterworth低通滤波器的特点是连续衰减,不像理想低通滤波器那样具有明显的不连续性。因此,用此滤波器处理后图像边缘的模糊程度大大降低。Butterworth锐化效果较好,边缘抖动现象不明显,但计算比较复杂。(3)指数滤波器包括指数低通滤波器、指数高通滤波器,指数低通滤波器在抑制噪声的同时,图像中边缘的模糊程度比Butterworth滤波器大。指数高通滤波器比Butterworth效果差些,边缘抖动现象不明显。(4)梯形滤波器包括梯形低通滤波器、梯形高通滤波器,梯形低通滤波器介于理想低通滤波器和指数低通滤波器之间,处理后的图像有一定的模糊。梯形高通滤波器会产生轻微抖动现象,但因计算简单而经常被使用。(5)高斯滤波器包括高斯低通滤波器、高斯高通滤波器。10.(1)取对数这使图像运算从乘法变为加法,分开照射分量和反射分量。然后,可以在频率域进行图像的处理。(2)对(1)的结果进行傅立叶变换(3)选取滤波器函数对进行滤波处理在这里,称为同态滤波函数,它可以分别作用于照射分量和反射分量上。同态滤波函数的类型和参数的选择对滤波的结果影响很大。(4)应用傅立叶逆变换将图像转换到空间域(5)再对上式进行指数变换11答:Canny边缘检测器是使用函数edge的最有效边缘检测器。该方法总结如下:1、图像使用带有指定标准偏差σ的高斯滤波器来平滑,从而可以减少噪声。2、在每一点处计算局部梯度g(x,y)=[G2x+G2y]1/2和边缘方向α(x,y)=arctan(Gy/Gx)。边缘点定义为梯度方向上其强度局部最大的点。3、第2条中确定的边缘点会导致梯度幅度图像中出现脊。然后,算法追踪所有脊的顶部,并将所有不在脊的顶部的像素设为零,以便在输出中给出一条细线,这就是众所周知的非最大值抑制处理。脊像素使用两个阈值T1和T2做阈值处理,其中T1T2。值大于T2的脊像素称为强边缘像素,T1和T2之间的脊像素称为弱边缘像素。4、最后,算法通过将8连接的弱像素集成到强像素,执行边缘链接。五、计算题:1.对下列图像进行均衡化,并画出均衡化的输出图像。0464445555044454554464656044165544644406444042554446444444375555解:0464445555044454554464656044165544644406444042554446444444375555共有8个灰度级:01234567各灰度级像素数nj:5111311681求直方图pf(nj/n):0.0780.0160.0160.0160.4840.250.1250.016求C(f):0.0780.0940.1100.1260.6100.8600.9851.01映射gi=INT[7C(f)+0.5]111146772.下图给出了一幅二值图像,给出边界八方向链码(起点是S点),说明算法扫面过程,并对该链码进行起点归一化,说明起点归一化链码与起点无关的原因。解:(1)八链码为:07000065653434222。(2)归一化八链码为:00006565343422207。同一个封闭边界的不同起点的各个链码可以看作是由表示该边界的一串数码(链码)循环移位得到的,如果把这一串数看作N位自然数,则不同的起点就形成不同大小的N位自然数,其中必存在一个最小,若将最小的N位自然数串的起点作为归一化链码的起点,则该归一化链码必唯一,也与起点无关。4.设1幅7×7大小的二值图像中心处有1个值为0的3×3大小的正方形区域,其余区域的值为1,如图所示。(1)使用Sobel算子来计算这幅图的梯度,并画出梯度幅度图(需给出梯度幅度图中所有像素的值);(2)使用Laplacian算子计算拉普拉斯图,并给出图中所有像素的值。1474446666144464664474767144176644744417444141664447444444176666figiPrewitt算子:101101101xW111000111yW解:(1)由水平模板Wx,可得水平梯度Gx为:101202101xW,11101111110111101111011110110111111114444434343434343434341414141xG由垂直模板Wy,可得垂直梯度Gy为:121000121yW,1111111111111100000111111

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功