当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 植树问题(两端都栽)教学设计
植树问题(两端都栽)教学设计教学过程:教学内容:人教版小学数学教材五年级上册第106页例1及相关内容。教学目标:1、通过猜测、试验、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律。2、引导学生构建数学模型,解决实际生活中的有关问题。3、培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。教学重点:发现并理解两端都栽的植树问题中间隔数与棵树的规律。教学难点:运用“植树问题”的解题思想解决生活中的实际问题。教学准备:课件、白纸教学过程:一、情境出示,设疑激趣教师:哪位同学知道我们国家设立的植树节是在哪一天?(3月12日)在这一天的植树活动中,遇到了这样一个问题。(课件出示问题)例1:同学们在全长100m的小路一边植树,每隔5m栽一棵(两端要栽)。一共要栽多少棵树?教师:你能利用所学的知识解决问题吗?(板书)你认为哪一个结果是正确的?【设计意图】直接出示例题的情境,通过学生的尝试解答,既是对教学起点的了解,又利用两种不同的结果设置疑问,激发了学生探求新知的热情。二、经历过程,感受方法教师:可以用怎样的方法进行检验呢?实践是检验真理的唯一标准,虽然我们不能去户外植树,但是我们可以在草稿本上画一画。遇到了什么困难?预设:100m太长了,不太好画。(追问:那我们可以怎么办?)学生:可以先用简单的数试一试。(课件出示)【设计意图】使学生经历分析思考的整个过程,感受“猜测──验证”的学习方法。在实际操作中发现问题有助于激发学生的思考,从而深刻地体会“从简单事例中发现规律,并利用此规律解决较复杂问题”的数学思想。三、探索实践,建立模型教师:先看看20m的距离,在两端都栽的情况下可以栽几棵树。实物投影或课件出示:教师:说说你是怎么想的?预设:20÷5=4,20m被平均分成4段,因为两端要栽,所以要栽5棵树。教师:再画一画,25m可以栽几棵树?(学生操作)谁来说说你的想法?预设:25÷5=5,就是把25m平均分成了5段,因为两端都要栽,所以要栽6棵树。还可以这样画:这里的蓝色线段表示什么?(间隔数)红色线段呢?(植树棵数)教师:不画图,你能把下面的表格填写完整吗?总长(m)间隔距离(m)间隔数(个)棵数(棵)5510204525563060(根据学生回答,教师在课件上输入数据)你发现了什么规律?预设:棵数要比间隔数多1。(追问:可以用怎样的一个式子表示?)棵数=间隔数+1。教师:谁能说说为什么要“+1”?(因为两端都要栽,所以栽树的棵树比间隔数多1。)你能用发现的规律解决开头的问题吗?(指名回答,分析讲解)教师:回顾这个问题的解答过程,说说你的想法。归纳小结:在解决较复杂或数据较大的问题时,可以先从简单数据出发得出规律,然后将规律运用于复杂问题进行解决。【设计意图】“画示意图──抽象出线段图──不画图”的教学过程,体现了从具体到抽象、从特殊到一般的设计理念,也正是在这一进程中,通过积极有效的教学活动,使学生建立起“一条线段两端都栽”这类植树问题的数学模型。四、利用新知,解决问题教师:根据刚才学到的知识,还可以解决许多生活中的问题。(课件出示问题)1.在一条全长2km的街道两旁安装路灯(两端也要安装),每隔50m安一盏。一共要安装多少盏路灯?教师:读完这个题目,你觉得有哪些地方需要特别引起注意?预设1:单位不统一,要先进行转化再计算。预设2:两旁。(追问:表示什么?)就是两边。你能通过画图的方法表示出“两旁”吗?在计算时该怎样体现?(先算出一边的路灯的数量,再乘以2。)学生练习,指名回答。2km=2000m(2000÷50+1)×2=82(盏)答:一共要安装82盏路灯。教师:2000÷50算的是什么?(间隔数)“+1”说明了什么?(两端都要安装)2.马路一边栽了25棵梧桐树。如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵?教师:仔细读题,认真思考,说说你对这个题目的理解。引导得出:要求一共栽多少棵银杏树,实际就是求梧桐树的间隔数。由“棵数=间隔数+1”可得“间隔数=棵数-1”。25-1=24(棵)答:一共要栽24棵银杏树。教师:可以用怎样的方法验证结果是否正确?(可以先用比较简单的例子,通过画线段图的方法进行验证)和这题有关的简单的例子,我们只要张开一只手。五个手指相当于题目中的?(梧桐树)每两个手指之间栽一棵(银杏树),可以栽几棵?你还有其他的方法吗?【设计意图】练习中的实际问题,相比例题有一些变化,对于学生的理解能力提出了更高的要求。第1题用画图的方法直观地表示出“两旁”,解决了算式中为什么要“×2”的问题;第2题先让学生思考,说说自己的理解,验证的环节既是对方法的回顾,又体现了数学的趣味性。五、逆向思考,拓展新知园林工人沿一条笔直的公路一侧植树,每隔6m种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?教师:读题并思考,要求“从第1棵到最后一棵的距离”就是求什么?(路长)跟例题相比,有什么不同?预设:例题是知道了路长求栽树的棵数,这题是知道了栽树的棵数,求路线长度。教师追问:该怎样解答呢?试一试,并说说你的思路。(36-1)×6=210(m)答:从第1棵到最后一棵的距离是210m。教师:“36-1”算的是什么?(间隔数)再根据“间隔数×间隔距离=路长”计算。【设计意图】通过变式练习,加深学生对例题中发现的规律的理解。该题是植树问题数学模型的逆向应用,有了前一题“间隔数=棵数-1”的知识为基础,学生应该能比较容易地解决这一问题。对于学习有困难的同学,也可引导他们用画线段图的方法解答。六、回顾思考,全课总结教师:通过这一节的学习,你有什么收获?跟大家交流一下。根据学生回答,强调:1.解决两端都要栽的植树问题的数学模型:棵数=间隔数+1。2.当遇到较为复杂的数学问题时,可以先从简单的事例中发现规律,然后应用找到的规律来解决原来的问题。【板书设计】植树问题(两端要栽)总长÷间距=间隔数间隔数+1=棵数100÷25+1=21(棵)
本文标题:植树问题(两端都栽)教学设计
链接地址:https://www.777doc.com/doc-7205990 .html