1计算方法第3版习题答案习题1解答1.1解:直接根据定义得*411()102x*411()102rx*3*12211()10,()1026rxx*2*5331()10,()102rxx1.2解:取4位有效数字1.3解:4335124124124()()()101010()1.810257.563raaaaaaaaa123()raaa123132231123()()()aaaaaaaaaaaa0.0161.4解:由于'1(),()nnfxxfxnx,故***1*(())()()()nnnfxxxnxxx故******(())(())()0.02()rrnfxxxfxnnxnxx1.5解:设长、宽和高分别为***50,20,10llhh2()llhh,*************()2[()()()()()()]lllhhlhh***4[]320lh令3201,解得0.0031,1.6解:设边长为x时,其面积为S,则有2()Sfxx,故'()()()2()Sfxxxx现100,()1xS,从而得()1()0.00522100Sxx1.7解:因Sld,故Sdl,Sld,*****()()()()()SSSldld*2()(3.124.32)0.010.0744Sm,******()()0.0744()0.55%13.4784rSSSldS1.8解:(1)4.472(2)4.471.9解:(1)(B)避免相近数相减(2)(C)避免小除数和相近数相减(3)(A)避免相近数相减(3)(C)避免小除数和相近数相减,且节省对数运算1.10解(1)357sin...3!5!7!xxxxx故有357sin..3!5!7!xxxxx,(2)1(1)(1)1lnxdxlnlnln1(1)1lnln1.11解:0.00548。1.12解:2116273102()()()1.13解:0.00002121.14解:1,((75)3)18;1uyuuux110991.15解;1010211021.4110102;不稳定习题2解答2.1解:略2.2解:233102(1)3(1)(1)3peexexex2.3解1221211119,()95,8maxnniiiiniixxxxxx2.4解11221111,16,7,()30maxmaxinnnnijijijFjnijijaaa1014,1420其特征值15221,故max2()152212.5解:略2.6证明:由于1maxiinxx,考虑111maxmaxnpppppiiiininixxxnxnx所以111()npppiixxnx,因为1lim1ppn,故11lim()nppipixx,即limppxx2.7解5)(,1,,5321A2.8解:3,32aba2.9解:123,526,25AAA2.10解:1211,,147fff2.11解:1772419191919010111361919191921762619191919A2.12解:略2.13解:略2.14解:定义内积11)()()(),(dxxxgxfgf,由教材式(7.2.5),(7.2.6)计算xxxxx001000000)()(,0380),(),(,1)(352)()(52381516),(),(,015160),(),(2011120011111111xxxxxxxxx149)()(70171516525136),(),(,05251360),(),(31222311222222222.15解:直接根据递推关系(6.7.6)及系数计算公式(6.7.7)即可算出结果。令4200000110142000()(,)2()1,()()(),(,)5()iiiiiiixPxxPPPxPxxPxPPPx故:1221102(),()()()()5pxxpxxPxPx4210111112142110010()(,)(,)127238446(),,,,,,55555(,)115(,)15()iiiiiiiixpxxpppppxpppppx于是24246()()()115515pxxx。习题3解答3.1(1)u=[y,x],(2)v=[x,y]3.2a=[4-12-845-3-16-7]forn=1:length(a)ifa(n)0,a(n)=a(n)*2;enda3.3a=[4-12-845-3-16-7]s=0;forn=1:length(a)ifa(n)0,s=s+a(n);endends3.4n=1:99;fork=1:99ifisprime(k)==1,n(k)=0;endendtotal=sum(n)%total=38903.5functiony=fun_ex(x)y=0.8*exp(-x)+x.^3.*sin(x);43.6functionf=fun_es(x,n)f=1;fa=1;fori=1:nda=fa*i;f=f+x.^i/fa;end3.7clear,closeallx=[0:0.01:4];y=1/(1+(x-2).^2);plot(x,y)xlabel(`x`);ylabel(`y`);axis([0,4,0,1])3.8C=A+B535335314D=A-B-311-3-133-10E=A*B1081036912510F=B*A1092068196183.9det(B)=12inv(B)=0.25000-0.2500-0.50000.66670.16670.2500-0.33330.4167B*inv(B)=1.000000.000001.00000.0000001.00003.10幂级数的系数5*poly([34-1-3])ans=5-15-802405习题4解答4.1解1.3694.2解:(,)4.3解:①略②取04x,1233.5642,3.3920,3.3541xxx45673.3483,3.3475,3.3474,3.3474xxxx,取*3.347x,其误差不超过310。③**'**1**()()2limlim()sin3kkkkkkxxxxxxxxxx故此迭代为线性收敛。4.4解:略4.5解:要求方法至少3阶收敛,则()0fx的根*x应满足**'*''*(),()0,()0xxxx,于是有:*****2*()()()()xxpxfxqxfx'**'*()1()()0xpxfx即*'*()1/()pxfx,'()1/()pxfx2''*'*'**''**'*()2()()()()2()()0xpxfxpxfxqxfx''*''*'**'**''*'*22'*'*()1()()()()()()/2()2()()fxfxfxqxpxpxfxfxfxfx故''**3'*1()()2()fxqxfx。于是''3'1()()2()fxqxfx。当'1()()pxfx,''3'1()()2()fxqxfx时,**'*''*(),()()0xxxx迭代法至少3阶收敛。4.6证:这里迭代公式1011kkxxx相应的迭代函数是()1xx容易验证,当0,2x时()0,2x,且成立1'()12x因此上述迭代过程收敛于方程210xx的正根(15)2x4.7证:运用压缩原理分析迭代过程1()kkkxxfx的迭代函数()()xxfx这里,对于一切x及任意,()x总是实数,因此封闭性条件自然满足再考察压缩性条件,据题设0'()mfxM知'()1'()max1,1xfxMm,max1,1LMm6当20M时成立1111Mm,故1,L压缩条件成立。4.8解:牛顿迭代法为1(),0,1,2,,()kkkkfxxxkfx故1()()kkkkfxxxfx211211()()()()()kkkkkkkkxxfxfxfxfxxx*21*21()()[()]()[()()]kkkkfxfxfxfxfxfx2*12*211()[()]()()[()]()kkkkkkffxxxfxfxx其中k介于kx与*x之间,1k介于1kx与*x之间,因此2**1122*2*111()[()]()1()limlim2()()[()]()()kkkkkkkkkkkkxxffxxxfxxxfxfxxfx4.9证这里迭代函数233(),'()4444aaxxxxx由于()aa,而10'()12a,这一迭代公式仅为线性迭代收敛。4.10略4.11证这里迭代函数2322(),'()(1)333aaxxxxx这时33()aa,而33'()0,''()0aa,故这一迭代法为平方收敛。4.12解略4.13解这里迭代函数为30125()()()aaxxxx令(),'()''()0aaaa,可列出方程01201212150150据此定出012,,,知所求的迭代公式为2155512824kkkkaaxxxx4.14解:所求的迭代公式为212555999kkkkaaxxxx4.15解:迭代4次4.16解略。4.17解:1(2)kkkxxax4.18解:10。4.19解:105a4.20解:11122kkxx,一。7习题5解答5.1解:经消元得三角方程组12323324534223355xxxxxx由回代公式,求得解1231xxx。5.2解:12341,2,0,1xxxx。5.3解对增广矩阵按列选主元后做高斯消元02010616562232222322|43017430176165602010b6165661656111351104110543333751861113009041111333324111020100061133616561113041133756200911114297800027525故4321112,,1,32xxxx5.4解275.5答案:1230,1,1xxx5.6略5.7解:43210,1