指数与指数幂的运算课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第二章基本初等函数(Ⅰ)2.1指数函数§2.1.1指数与指数幂的运算(1)1.整数指数幂的概念。*)(Nnaaaaaann个)0(10aa*),0(1Nnaaann零的负整数次幂没有意义零的零次幂没有意义2.运算性质:(,)()(,)()(),(0,,)mnmnmnmnnnnmmnnaaamnZaamnZababnZaaamnZa•平方根、立方根的概念22=4(-2)2=42,叫4的平方根-223=82叫8的立方根(-2)3=8-2叫-8的立方根25=322叫32的5次方根````````2叫a的n次方根2n=a由此,得n次方根的定义.),,1(次方根的叫则且若naxNnnaxn一、n次方根的定义:二、n次方根的性质:1、偶次方根有以下性质:2、奇次方根有以下性质:正数的偶次方根有两个且是相反数,即;负数没有偶次方根;na正数的奇次方根是正数,即;负数的奇次方根是负数,即;nana注:零的任何次方根是零,即。00n三、n次方根的表示:knaknaxnn2,12,Nk叫被开方数叫根指数,叫根式,其中anan例1、求下列各式的值:215()3322()()3332()()243()()想一想:(1)的含义是什么?结果呢?(2)的含义是什么?结果呢?nnanna四、根式的运算性质:(1)()nnaa(2)nna为偶数,为奇数nana,⑴非负实数a的n次方根的n次幂是它本身.你能用语言叙述吗:1)()nnaa⑵n为奇数时,实数a的n次幂的n次方根是a本身;n为偶数时,实数a的n次幂的n次方根是a的绝对值.2)nna,anan为奇数,为偶数你能用语言叙述吗:例2、求下列各式的值:)().4(3).3(10).2(8).1(244233baba【练习】化简下列各式:(1)681;(2)26(2);(3)1532;(4)84x;(5)624ab;【练习】化简下列各式:(1)481;(2)364;(3)532;(4)443;(5)556;(6)552;(7)664;练一练

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功